

Matt Stauffer

Boston

Laravel: Up and Running

xxx-x-xxx-xxxx-x

[???]

Laravel: Up and Running
by Matthew E. Stauffer

Copyright © 2016 Matthew E Stauffer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: FILL IN
Editor: TO COME
Production Editor: TO COME
Copyeditor: TO COME

Proofreader: TO COME
Indexer: TO COME
Interior Designer: David Futato
Cover Designer: TO COME
Illustrator: Rebecca Demarest

Month Year: First Edition

Revision History for the First Edition
2016-03-17: First Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449370787 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. book title, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449370787

Table of Contents

1. Why Laravel?. 7
Why use a framework? 7

“I’ll just build it myself ” 8
Consistency + Flexibility 8

A short history of web and PHP frameworks 8
Ruby on Rails 8
The influx of PHP frameworks 9
The good and the bad of CodeIgniter 9
Laravel 1, 2, and 3 9
Laravel 4 10
Laravel 5 10

The philosophy of Laravel 10
Developer happiness 11
The Laravel Community 11

What makes Laravel unique? 11
See how it works 12
Why Laravel? 14

2. Setting Up a Laravel Development Environment. 15
System Requirements 15
Tools 16

Composer 16
Vagrant, VMWare, and VirtualBox 16
Laravel Homestead 16

Setting up Homestead 16
Installing Homestead’s dependencies 17
Installing Homestead 17
Configuring Homestead 17

iii

Creating databases in Homestead 19
Provisioning Homestead 19
Using Homestead day-to-day 19

Creating a new Laravel project 20
Installing Laravel with the Laravel installer tool 20
Installing Laravel with Composer’s create-project feature 21

Laravel’s Directory structure 21
The loose files 21
The folders 22

Up and Running 23
Testing 23
TL;DR 23

3. Routing and Controllers. 25
Route Definitions 25

Route verbs 27
Route Handling 28
Route Parameters 28
Route Names 29

Route Groups 31
Route group middleware 32
Route group route prefix 32
Route group sub-domain routing 33
Route group namespace prefix 34
Route group name prefix 34

Views 34
View Composers and sharing variables with every view 36
Controllers 36

Getting user input 38
Injected Dependencies into Controllers 39
Resource controllers 40

Route model binding 42
Implicit route model binding 42
Custom route model binding 43

Form method spoofing & CSRF 44
An introduction to HTTP verbs 44
HTTP verbs in Laravel 44
Form method spoofing 45
CSRF protection 45

Redirects 46
Redirect to 47
Redirect route 47

iv | Table of Contents

Redirect back 47
Redirect guest and intended 48
Other redirect methods 48
Redirect with 48

Abort 50
Custom responses 50

Response make 50
Response json/jsonp 50
Response download 50

Testing 51
TL;DR 51

4. Blade Templating. 53
Echoing data 54
Control structures 55

Conditionals 55
Loops 55
Or 56

Template inheritance 56
Defining sections with @section/@show and @yield 57
@extends 58
@section and @endsection 58
@parent 58
@include 59
@each 59

View composers and service injection 60
Binding data to views using view composers 60
Service injection 63

Custom Blade directives 64
Testing 67
TL;DR 67

5. View Components. 69
Elixir 69

Elixir folder structure 71
Running Elixir 71
What does Elixir provide? 72

Pagination 77
Paginating database results 77
Manually creating paginators 77

Message bags 78
Named error bags 79

Table of Contents | v

String helpers, pluralization, and localization 79
The string helpers and pluralization 80
Localization 80

Testing 82
Testing with Elixir 82
Testing message and error bags 82
Translation and localization 83

TL;DR 83

6. Collecting and Handling User Data. 85
The Request façade 85
Request::all 85
Request::except and Request::only 86
Request::has and Request::exists 87
Request::input 87
Array input 87
JSON input (and Request::json) 88

Route data 89
From the façade 89
From route parameters 90

Uploaded files 90
Validation 92
validate() in the controller using ValidatesRequests 92
Manual validation 94
Displaying validation error messages 95

Form Requests 96
Creating a Form Request 96
Using a Form Request 97

Eloquent model mass assignment 97
{{ vs {!! 98
Testing 98
TL;DR 99

vi | Table of Contents

CHAPTER 1

Why Laravel?

In the early days of the dynamic web, programming a website or application meant
writing the code for not just the unique business logic of your application, but also
for each of the components that are so common across sites—user authentication,
input validation, database access, templating, and more.

Today, programmers have dozens of application development frameworks and thou‐
sands of components and libraries available for easy use. It’s a common refrain among
programmers that, by the time you learn one framework, three newer (and purport‐
edly better) frameworks have popped up intending to replace it.

So, why frameworks? And, more specifically, why Laravel?

Why use a framework?
It’s easy to see why it’s beneficial to use the individual components, or packages, that
are available to PHP developers. With packages, someone else is responsible for
developing and maintaining a constrained piece of code that has a well-defined job,
and in theory that person has a deeper understanding of this single component than
you have time to have.

Frameworks like Laravel—and Symfony, Silex, Lumen, and Slim—pre-package a col‐
lection of third-party components together with custom framework “glue” like con‐
figuration files, service providers, prescribed directory structures, and application
bootstraps. So, the benefit of using a framework in general is that someone has made
decisions not just about individual components for you, but also about how those
components should fit together.

7

“I’ll just build it myself”
Let’s say you start a new web app without the benefit of a framework. Where do you
start? Well, it should probably route HTTP requests, so you now need to evaluate all
of the HTTP request and response libraries available and pick one. Then a router. Oh,
and you’ll probably need to set up some form of routes configuration file. What syn‐
tax should it use? Where should it go? What about controllers? Where do they live,
how are they loaded? Well, you probably need a Dependency Injection Container to
resolve the controllers and their dependencies. But which one?

Furthermore, what if you do take the time to answer all those questions and success‐
fully create your application—what’s the impact on the next developer? What about
when you have four such custom-created applications, or fifteen, and you have to
remember where the controllers live in each, or what the routing syntax is?

Consistency + Flexibility
Frameworks address this issue by providing a researched(?) answer to “which com‐
ponent should we use here,” and ensuring that the particular components chosen
work well together. Additionally, frameworks provide conventions that reduce the
amount of code a developer new to the project has to understand—if you understand
how routing works in one Laravel project, for example, you understand how it works
in all Laravel projects.

When someone prescribes rolling your own framework for each new project, what
they’re really advocating is the ability to control what does and doesn’t go into your
application’s foundation. That means the best frameworks will both provide you with
a solid foundation, but also give you the freedom to customize to your heart’s content.

A short history of web and PHP frameworks
We’ve covered why frameworks are helpful, and that’s an important aspect of under‐
standing the answer to the question “Why Laravel?” But it’s also valuable to know
what frameworks and other movements happened in the PHP and web development
spaces prior to Laravel’s rise to popularity.

Ruby on Rails
David Heinemeier Hansson released the first version of Ruby on Rails in 2004, and
it’s been hard to find a web application framework since then that hasn’t been influ‐
enced by Rails in some way.

Rails popularized MVC, RESTful JSON APIs, convention over configuration, Active‐
Record, and many more tools and conventions that had a profound influence on the

8 | Chapter 1: Why Laravel?

way web developers approached their applications—especially with regard to Rapid
Application Development.

The influx of PHP frameworks
It was clear to most developers that Rails, and similar web application frameworks,
were the wave of the future, and PHP frameworks, including those admittedly imitat‐
ing Rails, starting popping up quickly.

CakePHP was the first in 2005, and it was soon followed by Symfony, CodeIgniter,
Zend Framework, and Kohana (a CodeIgniter fork). Yii arrived in 2008, and Aura
and Slim in 2010. 2011 brought Fuel, another CodeIgniter fork, and Laravel, which
wasn’t quite a CodeIgniter offshoot, but instead proposed as an alternative.

Some of these frameworks were more Rails-y, focusing on database ORMs, MVC
structures, and other tools targeting rapid development. Others, like Symfony and
Zend, focused more on enterprise design patterns and e-commerce.

The good and the bad of CodeIgniter
CakePHP and CodeIgniter were the two early PHP frameworks that were most open
about how much their inspiration was drawn from Rails. CodeIgniter quickly rose to
fame and by 2010 was arguably the most popular of the independent PHP frame‐
works.

CodeIgniter was simple, easy to use, and boasted amazing documentation and a
strong community. But it grew slowly, and as the framework world grew and PHP’s
tooling advanced, CodeIgniter started falling behind both in terms of technological
advances and out-of-the-box features. It was in 2010 that Taylor Otwell, Laravel’s cre‐
ator, became dissatisfied enough with CodeIgniter that he set off to write his own
framework.

@todo Cite this: http://maxoffsky.com/code-blog/history-of-laravel-php-framework-
eloquence-emerging/ Attribute more core folks from 1? 5? TAYLOR: 1.0 - 2.0 - xikeon,
mikelbring, pedroborges jason lewis... 3.0 - dayle, phill sparks, machuga, jason lewis.. 4.0
-5.0 - transitioning from 3.0 crew to matt, adam, jeffrey

Laravel 1, 2, and 3
The first beta of Laravel 1 was released in June 2011, and it consisted of entirely cus‐
tom code. It featured a custom ORM (Eloquent), Closure routing (inspired by Ruby
Sinatra), a module system for extension, and helpers for forms, validation, authenti‐
cation, and more.

A short history of web and PHP frameworks | 9

Early Laravel development moved quickly, and Laravel 2 and 3 were released in
November 2011 and February 2012 respectively. They introduced controllers, unit
testing, a CLI tool, an IOC container, Eloquent relationships, and migrations.

Laravel 4
With Laravel 4, Taylor re-wrote the entire framework from the ground up. By this
point Composer was showing signs of becoming an industry standard and Taylor saw
the value of re-writing the framework as a collection of components, distributed and
bunded together with Composer.

Taylor developed a set of components under the code-name Illuminate and, in May of
2013, released Laravel 4 as a fresh look at Laravel, based on pulling in Symfony and
Illuminate packages in via Composer.

Laravel 4 also introduced queues, a mail component, Façades, and database seeding.
And because Laravel was now relying on Symfony components, it was announced
that Laravel would be mirroring (not exactly, but soon-after) the release-every-6-
months release schedule Symfony follows.

Laravel 5
Laravel 4.3 was scheduled to release in November 2014, but as development pro‐
gressed, it became clear that the significance of its changes merited a major release,
and Laravel 5 was released in February 2015.

Laravel 5 introduced a revamped directory structure, removal of the form and HTML
helpers, the introduction of the Contract interfaces, a spate of new views, Socialite for
social media authentication, Elixir for asset compilation, Scheduler to simplify cron,
dotenv for simplified environment management, Form Requests, and a brand new
CLI.

The philosophy of Laravel
You only need to read through the Laravel marketing materials and READMEs to
quickly gather its values. “Illuminate.” “Spark.” And then there are these: “Artisans.”
“Elegant.” Also, these: “Breath of Fresh Air.” “Fresh start.” And finally: “Rapid.” “Warp
Speed.”

The two most strongly communicated values of the framework are to increase devel‐
oper speed and happiness. Taylor has described the Artisan language as intentionally
contrasting against more utilitarian values. (@todo introduce a quote from Taylor
interviewing where eh talks about making beautiful and elegant code that you really
care about). And he’s often talked about the value of making it easier and quicker for

10 | Chapter 1: Why Laravel?

developers to take their ideas to fruitiion, getting rid of unnecessary barriers to creat‐
ing great products.

Developer happiness
Laravel is, at its core, about equipping and enabling developers. Its goal is to provide
clear, simple, and beautiful code and features that help developers learn, start, and
develop quickly and write code that’s simple, clear, and will last.

The concept of targeting developers is clear across Laravel materials. “Happy devel‐
opers make the best code” is in the documentation. “Developer happiness from
download to deploy” was the unofficial slogan for a while. Of course, any tool or
framework will say they want their developers to be happy. But developer happiness
as primary concern, rather than secondary, has had a huge impact on Laravel’s style
and decision-making progress. Where other frameworks may target architectural
purity as their primary goal, or compatibility with the goals and values of enterprise
development teams, Laravel’s primary focus is on serving the individual developer.

The Laravel Community
If this book is your first exposure to the Laravel community, you have something spe‐
cial to look forward to. One of the distinguishing elements of Laravel, one which has
contributed to its growth and success, is the welcoming, teaching community that
surrounds it. From Jeffrey Way’s Laracasts video tutorials to Slack and IRC channels,
from Twitter friends to bloggers to the Laracon conferences, Laravel has a rich and
vibrant community full of folks who’ve been around since day one and folks who are
on their own day one. And this isn’t an accident.

From the very beginning of Laravel, I’ve had this idea that all people want to feel like
they are part of something. It’s a natural human instinct to want to belong and be
accepted into a group of other like-minded people. So, by injecting personality into a
web framework and being really active with the community, that type of feeling can
grow in the community.

—Taylor Otwell, Product and Support
Interview

Taylor understood from the early days of Laravel that a successful open source project
needed two things: good documentation and a welcoming community. And those
two things are now hallmarks of Laravel.

What makes Laravel unique?
@todo Ally’s note: Maybe pulling out a few highlights of what separates Laravel from
other frameworks in the space. You’ve already called out community and emphasis on
the individual developer, anything else?

What makes Laravel unique? | 11

See how it works
Up until now, everything I’ve shared here has been entirely abstract. What about the
code, you ask? Let’s dig into a simple application so you can see what working with
Laravel day-to-day is actually like.

Let’s look at Hello, World.

Example 1-1. “Hello, World” in routes.php

// File: app/Http/routes.php
<?php

Route::get('/', function() {
 return 'Hello, World!';
});

If you initialize a brand new Laravel application on your machine, edit the app/Http/
routes.php file and make it look like the preceding example, and then serve the site
from the public directory, you’ll have a fully functioning Hello, World example:

Figure 1-1. New Laravel landing page

It looks very similar to do the same with controllers:

Example 1-2. “Hello, World” with controllers

// File: app/Http/routes.php
<?php

Route::get('/', 'WelcomeController@index');

// File: app/Http/Controllers/WelcomeController.php
<?php
namespace app\Http\Controllers;

class WelcomeController
{
 public function index()

12 | Chapter 1: Why Laravel?

 {
 return 'Hello, World!';
 }
}

And if we’re storing our greetings in the database, it’ll also look pretty similar (see
Example 1-3).

Example 1-3. Multi-greeting “Hello, World” with database access

// File: app/Http/routes.php
<?php

Route::get('/', function() {
 return Greeting::first()->greeting_text;
});

// File: app/Greeting.php
<?php

use Illuminate\Database\Eloquent\Model;

class Bio extends Model
{
 protected $table = 'greetings';
}

// File: database/migrations/2015_07_19_010000_create_greetings_table.php
<?php

use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;

class CreateGreetingsTable extends Migration
{
 public function up()
 {
 Schema::create('greetings', function (Blueprint $table) {
 $table->increments('id');
 $table->string('greeting_text');
 $table->timestamps();
 });
 }

 public function down()
 {
 Schema::drop('greetings');
 }
}

Example 1-3 might be a bit overwhelming, and if so, just skip over it; we’ll learn
everything that’s happening here in later chapters. But you can see that, with just a

See how it works | 13

few lines of code, we’ve set up database migrations and models and pulled records
out. It’s just that simple.

Why Laravel?
So—why Laravel?

Because Laravel helps you bring your ideas to reality with no wasted code, using
modern coding standards, among a vibrant community, with an empowering ecosys‐
tem of tools.

And because you, dear developer, deserve to be happy.

14 | Chapter 1: Why Laravel?

CHAPTER 2

Setting Up a Laravel Development
Environment

Part of PHP’s success has been because it’s hard to find a web server that can’t serve
PHP. However, modern PHP tools have stricter requirements than those of the past.
The best way to develop for Laravel is to ensure a consistent local and remote server
environment for your code, and thankfully, the Laravel ecosystem has a few tools for
this.

System Requirements
All of the following is possible with Windows systems, but many pages of instructions
and caveats need to be made for Windows systems. As such, I’ll leave those caveats to
better-equipped writers online, and just focus on Unix/Linux/OS X developers.

Even with access to the command line and with the ability to install PHP and MySQL
and other tools locally, you’ll likely still run into version mismatches at some point or
another, and it’s highly recommended to do all of your local development on virtual
machines using a tool like Vagrant.

Regardless of what tool you use, here are the minimum requirements for running
Laravel 5.1:

• PHP >= 5.5.9
• OpenSSL PHP Extension
• PDO PHP Extension
• Mbstring PHP Extension
• Tokenizer PHP Extension

15

Tools
Composer
Whatever machine you’re developing on will need to have Composer installed glob‐
ally. If you’re not familiar with Composer, it’s the foundation of most modern PHP
development. Composer is a dependency manager for PHP, much like NPM for Node
or Ruby Gems for Ruby. You’ll need Composer to install Laravel, update Laravel, and
bring in an external dependencies.

Vagrant, VMWare, and VirtualBox
If you’re not familiar with Vagrant, it’s a configuration tool that sits on top of either
VMWare or VirtualBox and makes it easy to spin up virtual machines with pre-
defined configurations. This means you can develop web sites locally without having
to even run a web server on your local machine, and you can ensure your server con‐
figuration is in close sync with your production environment.

Laravel Homestead
Laravel Homestead is another tool that sits on top of Vagrant and provides a pre-
configured virtual machine image that is perfectly set-up for Laravel development,
and mirrors the most common VPS server that many Laravel sites run on.

Setting up Homestead
If you’re new to Laravel development, getting started with VirtualBox, Vagrant, and
Homestead will give you the best development experience regardless of your own
computer’s configuration.

What tools does Homestead offer?
You can always upgrade your Homestead box, but here’s what it comes with by
default:

• Ubuntu
• PHP
• Nginx
• MySQL
• Postgres
• Redis
• Memcached

16 | Chapter 2: Setting Up a Laravel Development Environment

https://getcomposer.org/
https://www.vagrantup.com
http://www.vmware.com
https://www.virtualbox.org/

• Node
• Beanstalkd

Installing Homestead’s dependencies
First, you’ll need to download and install either VirtualBox or VMWare. VirtualBox
is most common because it’s free.

Next, download and install Vagrant.

Vagrant is convenient because it makes it easy for you to create a new local virtual
machine from a pre-created “box”, which is essentially a template for a virtual
machine. So the next step is to run vagrant box add laravel/homestead from the
Terminal to download the box.

Installing Homestead
Next, let’s actually install Homestead. You can install multiple instances of Homestead
(often used to host a different Homestead box per project), but I prefer a single
Homestead virtual machine for all of my projects. If you want one per project, you’ll
want to install Homestead in your project directory; check the Homestead documen‐
tation online for instructions. If you want a single virtual machine for all of your
projects, install Homestead in your user’s home directory like in Example 2-1.

Example 2-1. Installing Homestead

git clone https://github.com/laravel/homestead.git ~/Homestead

Now, run the initialization script from wherever you put the Homestead directory like
in Example 2-2.

Example 2-2. Initializing Homestead

bash ~/Homestead/init.sh

This will place Homestead’s primary configuration file, Homestead.yaml, in a new
~/.homestead directory.

Configuring Homestead
Open up Homestead.yaml and configure it how you’d like. You’ll need to tell it your
provider (likely virtualbox), point it to your public SSH key (likely ~/.ssh/
id_rsa.pub), map folders and sites to their local machine equivalents, and provision
database.

Setting up Homestead | 17

https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html

Mapping folders in Homestead allows you to edit files on your local machine and
have those files show up in your Vagrant box so they can be served. For example, if
you have a ~/Sites directory where you put all of your code, you would map the
folders in Homestead like in Example 2-3.

Example 2-3. Mapping folders in Homestead.yaml

folders:
 - map: ~/Sites
 to: /home/vagrant/Sites

We’ve now just created a directory in your Homestead virtual machine at /home/
vagrant/Sites that will mirror your computer’s directory at ~/Sites.

TLDs for development sites

You can choose any convention for local development sites’ URLs,
but .app and .dev are the most common. Throughout this book,
I’ll be using .app—so if I’m working on a local copy of symposiu
mapp.com, I’ll develop at symposiumapp.app.

Now, let’s set up our first example web site. Let’s say our live site is going to be proj
ectName.com. Let’s map our local development folder to projectName.app, so we
have a separate URL to visit for local development.

Example 2-4. Mapping sites in Homestead.yaml

sites:
 - map: projectName.app
 to: /home/vagrant/Sites/projectName/public

As you can see, we’re mapping the URL projectName.app to the virtual machine
directory /home/vagrant/Sites/projectName/public, which is the public folder
within our Laravel install. We’ll learn more about that later.

Finally, we’re going to need to teach your local machine that, when you try to visit
projectName.app, it should look at your computer’s local IP Address to resolve it.
Mac and Linux users should edit /etc/hosts, Windows users C:\Windows\Sys
tem32\drivers\etc\hosts. We’ll just add a line to this file that looks like
Example 2-5.

Example 2-5. Adding a local development site to your hosts file

192.168.10.10 projectName.app

18 | Chapter 2: Setting Up a Laravel Development Environment

Once we’ve provisioned Homestead, your site will be available to browse (on your
machine) at http://projectName.app/.

Creating databases in Homestead
Just like you can define a site in Homestead.yaml, you can also define a database.
Databases are a lot simpler, because you’re only telling the provisioner to create a
database with that name, nothing else.

Example 2-6. Creating databases in Homestead.yaml

databases:
 - projectname

Provisioning Homestead
Since this is our first time actually turning on our Homestead box, we need to tell
Vagrant to initialize it. Navigate to your Homestead directory and run vagrant up:

Example 2-7. Provisioning a Homestead box

cd ~/Homestead
vagrant up

Your Homestead box is now up and running, it’s mirroring a local folder, and it’s
serving it to a URL you can visit in any browser on your computer. It also has added a
MySQL database. Now that you have that environment running, you’re ready to set
up your first Laravel project; but first, a quick note about using Homestead day-to-
day.

Using Homestead day-to-day
It’s common to leave your Homestead virtual machine up and running at all times,
but if you don’t, or if you have recently restarted your computer, you’ll need to know
how to spin the box up and down.

Since Homestead is based on Vagrant commands, you’ll just use basic Vagrant com‐
mands for most Homestead actions. cd to the directory where you installed Home‐
stead and then run the following commands:

• vagrant up spins up the Homestead box
• vagrant suspend takes a snapshot of where the box is and then shuts it down;

like “hibernating” a desktop machine
• vagrant halt shuts the entire box down; like turning off a desktop machine

Setting up Homestead | 19

http://projectName.app/

• vagrant destroy deletes the entire box; like formatting a desktop machine
• vagrant provision re-runs the provisioners on the preexisting box

Connecting to Homestead databases from desktop applications
If you use a desktop application like Sequel Pro, you’ll likely want to connect to your
Homestead MySQL databases from your host machine. These settings will get you
going:

• Connection Type: Standard (non-SSH)
• Host: 127.0.0.1
• Username: homestead
• Password: secret
• Port: 33060

Creating a new Laravel project
There are two ways to create a new Laravel project, but both are run from the com‐
mand line. The first is to globally install the Laravel installer tool (using Composer);
the second is to use Composer’s create-project feature.

You can learn about both options in more detail at the Installation Documentation:
http://laravel.com/docs/installation

Installing Laravel with the Laravel installer tool
If you have Composer globally required, installing the Laravel installer tool is as sim‐
ple as running the following command:

Example 2-8. Installing the Laravel installer tool

composer global require "laravel/installer=~1.1"

Once you have the Laravel installer tool installed, spinning up a new Laravel project
is simple. Just run laravel new ProjectName from your command line.

Example 2-9. Creating a new Laravel project using the installer tool

laravel new projectName

This will create a new subdirectory of your current directory named projectName
and install a bare Laravel project in it.

20 | Chapter 2: Setting Up a Laravel Development Environment

http://laravel.com/docs/installation

Installing Laravel with Composer’s create-project feature
Composer also offers a feature called create-project for creating new projects with
a particular skeleton. To use this tool to create a new Laravel project, issue the com‐
mand shown in Example 2-10.

Example 2-10. Creating a new Laravel project using the installer tool

composer create-project laravel/laravel projectName --prefer-dist

Just like the installer tool, this will create a subdirectory of your current directory
named projectName that contains a skeleton Laravel install, ready for you to develop.

Laravel’s Directory structure
When you open up a directory that contains a skeleton Laravel application, you’ll see
the following files and directories:

app
bootstrap
config
database
public
resources
storage
tests
vendor
.env
.env.example
.gitattributes
.gitignore
artisan
composer.json
composer.lock
gulpfile.js
package.json
phpspec.yml
phpunit.xml
readme.md
server.php

Let’s walk through them one-by-one to get familiar.

The loose files
.env and .env.example are the files that dictate the environment variables, variables
which are expected to be different in each environment and are therefore not com‐
mitted to version control. .env.example is a template that each environment should
duplicate to create its own .env file, which is Git ignored.

Laravel’s Directory structure | 21

artisan is the file that allows you to run Artisan commands from the command line.

.gitignore and .gitattributes are Git configuration files.

composer.json and composer.lock are the configuration files for Composer; com
poser.json is user-editable and composer.lock is not. These files share some basic
information about this project and also define its PHP dependencies.

gulpfile.js is the (optional) configuration file for Elixir and gulp. This is for man‐
aging your frontend assets.

package.json is like composer.json but for frontend assets.

phpspec.yml and phpunit.xml are configuration files for testing tools.

readme.md is a Markdown file giving a basic introduction to Laravel.

server.php is a backup server that tries to allow less-capable servers to still preview
the Laravel application.

The folders
app is where the bulk of your actual application will go. Models, controllers, route
definitions, commands, and your PHP domain code all go in here.

bootstrap contains the files that the Laravel framework uses to boot every time it
runs.

config is where all configuration files live.

database is where database migrations and seeds live.

public is the directory the server points to when it’s serving the website. This con‐
tains index.php, which is the front controller that kicks off the bootstrapping process
and routes all requests appropriately. It’s also where any public-facing files like
images, stylesheets, scripts, or downloads go.

resources is where non-PHP files that are needed for other scripts live. Views, lan‐
guage files, and (optionally) Sass/LESS and source JavaScript files live here.

storage is where caches, logs, and compiled system files live.

tests is where unit and integration tests live.

vendor is where Composer installs its dependencies. It’s Git ignored, as Composer is
expected to run as a part of your deploy process on the remote server.

22 | Chapter 2: Setting Up a Laravel Development Environment

Up and Running
You’re now up and running with a bare Laravel install. Run git init, commit the
bare files, and you’re ready to start coding.

Testing
In every chapter after this, the “Testing” section of the Testing & TL;DR conclusion to
each chapter will show you how to write tests for that feature. Since this chapter
doesn’t cover a testable feature, let’s talk tests quickly. To learn more about writing
and running tests in Laravel, head over to ???.

Out of the box, Laravel brings in PHPUnit as a dependency and is configured to run
the tests in any file in the tests directory that ends with Test.php (for example,
tests/UserTest.php).

So the simplest way to write tests is to create a file in the tests directory that ends
with Test.php. And the easiest way to run them is to run ./vendor/bin/phpunit
from the command line (in the project root).

If any tests require database access, be sure to run your tests from the machine where
your database is hosted—so if you’re hosting your database in Vagrant, make sure to
ssh into your Vagrant box to run your tests from there. Again, you can learn about
this and much more in ???.

TL;DR
Laravel has a pre-configured Vagrant setup named Homestead, which is the recom‐
mended local development environment. Laravel relies on, and can be installed by,
Composer, and comes out of the box with a series of folders and files that reflect both
its conventions and its relationship with other open source tools.

Up and Running | 23

CHAPTER 3

Routing and Controllers

The essential function of any web application framework is taking requests from a
user and delivering responses, usually via HTTP(S). This means defining an applica‐
tion’s routes is the first and most important concept to approach when learning a web
framework; without routes, you have no ability to interact with the end user.

In this chapter we will examine routes in Laravel and show how to define them, how
to point them to the code they should execute, and how to use Laravel’s routing tools
to handle a diverse array of routing needs.

Route Definitions
Laravel’s routes are defined in app/Http/routes.php.

The simplest route definition matches a URI (e.g. /) with a Closure:

Example 3-1. Basic Route Definition

Route::get('/', function () {
 return 'Hello, World!';
});

What’s a Closure?
Closures are PHP’s version of anonymous functions. A Closure is a function that you
can pass around as an object, assign to a variable, pass as a parameter to other func‐
tions and methods, or even serialize.

25

This teaches the Laravel router that, if anyone visits / (the root of your domain), it
should run the Closure defined there and return the result. Note that we return our
content, not echo or print.

A Quick Introduction to Middleware

You might be wondering, “Why am I returning Hello, World!
instead of echoing it?”
There are quite a few answers, but the simplest is that there are a
lot of wrappers around Laravel’s Request and Response cycle,
including something called Middleware. When your route closure
or controller method is done, it’s not time to send the output to the
browser yet; returning the content allows it to continue flowing
through the response stack and the middleware before it is
returned back to the user.

Many simple web sites could be defined entirely within the Routes file. Simple GET
routes combined with a few templates can serve a classic web site easily.

Example 3-2. Sample web site

Route::get('/', function () {
 return view('welcome');
});

Route::get('about', function () {
 return view('about');
});

Route::get('products', function () {
 return view('products');
});

Route::get('services', function () {
 return view('services');
});

26 | Chapter 3: Routing and Controllers

Static calls

If you have much experience developing PHP, you might be sur‐
prised to see the static calls on the Route class. This is not actually a
static method per se, but rather service location using Laravel’s
Façades, which we’ll cover in chapter ???.
If you prefer to avoid Façades, you can accomplish these same defi‐
nitions like this:

$router->get('/', function () {
 return 'Hello, World!';
});

HTTP Methods
If you’re not familiar with the idea of HTTP methods, read on in this chapter for
more information, but for now, just know that every HTTP request has a “verb”, or
method, along with it. Laravel allows you to define your routes based on which “verb”
was used; the most common are GET and POST, followed by PUT, DELETE, and PATCH.
Each method communicates a different thing to the server, and to your code, about
the intentions of the caller.

Route verbs
You might’ve noticed the "get" method in Route::get. This means we’re telling Lara‐
vel to only match for this route when the HTTP request uses the GET action. But what
if it’s a form POST, or maybe some JavaScript sending PUT or DELETE requests? There
are a few other options for methods to call on a route definition.

Example 3-3. Route verbs

Route::get('/', function () {
 return 'Hello, World!';
});

Route::post('/', function () {});

Route::put('/', function () {});

Route::delete('/', function () {});

Route::any('/', function () {});

Route::match(['get', 'post'], '/', function () {});

Route Definitions | 27

Route Handling
As you’ve probably guessed, passing a Closure to the route definition is not the only
way to teach it how to resolve a route. Closures are quick and simple, but the larger
your application gets, the clumsier it becomes to put all of your routing logic in this
one file.

The other common option is to pass a controller name and method as a string in
place of the Closure, as in Example 3-4.

Example 3-4. Routes Calling Controller Methods

Route::get('/', 'WelcomeController@index');

This is telling Laravel to pass requests to that URI to App\Http\Controllers\Welco
meController, welcome() method. This method will be passed the same parameters
and treated the same as a Closure you might’ve alternately put in its place.

Route Parameters
If the route you’re defining has parameters, it’s simple to add them into both the URI
definition and the callback.

Example 3-5. Route Parameters

Route::get('users/{id}/friends', function ($id) {
 //
});

The naming relationship between route parameters and Closure/
controller method parameters

As you can see in Example 3-5, it’s most common to use the same name for your
route parameters ({id}}) and the method parameters they inject into your
route definition ($id+). But is this necessary?

Unless you’re using route/model binding, no. In fact, you could dependency inject to
the left and right of a method parameter and you could name it different, and it
would still work. The only thing that defines which route parameter matches with
which method parameter is that they are in the same order (left to right), excluding
injected dependencies, as you can see below.

Route::get('users/{id}', function (
 Application $injectedApplication,
 $thisIsActuallyTheRouteId,
 Request $injectedRequest
) {

28 | Chapter 3: Routing and Controllers

 //
});

You can also make your route parameters optional:

Example 3-6. Optional Route Parameters

Route::get('users/{id?}', function ($id = 'fallbackId') {
 //
});

And you can use regular expressions to define that a route should only match if a
parameter meets particular requirements, as in Example 3-7.

Example 3-7. Regular Expression Route Contraints

Route::get('users/{id}', function ($id) {
 //
})->where('id', '[0-9]+');

Route::get('users/{username}', function ($username) {
 //
})->where('username', '[A-Za-z]+');

Route::get('posts/{id}/{slug}', function ($id, $slug) {
 //
})->where(['id' => '[0-9]+', 'slug' => '[A-Za-z]+']);

As you’ve probably guessed, if you visit a URI that matches a path, but the regex
doesn’t match the parameter, it won’t be matched. So users/abc in the example above
would skip the first Closure, but it would be matched by the second Closure, so it
would get routed there. On the other hand, posts/abc/123 wouldn’t match any of the
Closures, so it would give a 404.

Route Names
By default, you’ll refer to these routes elsewhere in your application just by their URI.
This will be very familiar. There’s a url() helper to simplify that linking in your
views, if you need it; see Example 3-8 for an example.

Example 3-8. URL Helper

<a href="<?php echo url('/'); ?>">

However, Laravel also allows you to name each route, which enables you to refer to it
without explicitly referencing the URL. This is helpful because you can give simple

Route Definitions | 29

nicknames to complex routes, and also because linking them by name means you
don’t have to re-write your frontend links if the URIs change.

Example 3-9. Defining route names

// app/Http/routes.php
Route::get('members/{id}', [
 'as' => 'members.show',
 'uses' => 'MembersController@show'
]);

// view file
<a href="<?php echo route('members.show', ['id' => 14]); ?>">

We’ve introduced a few new concepts there. First, we passed a configuration array to
the second parameter instead of a string. Laravel checks the type of the second
parameter and routes accordingly; if it’s a Closure, it runs it; if it’s a string, it assumes
it’s the identification of a controller and method; and if it’s an array, it expects to get
enough parameters frmo the array that it can resolve the route.

In Example 3-9, we can see that we’ve also introduced the idea of as, which allows us
to name the route. We’ve named this route members.show, which is a common con‐
vention within Laravel for route and view names: resourcePlural.action.

Route naming conventions
You can name your route anything you’d like, but the common convention is to use
the plural of the resource name, then a period, then the action. So here are the routes
most common for a resource named photos:

photos.index photos.create photos.store photos.show photos.edit photos.update pho‐
tos.destroy

To learn more about these conventions, read about “Resource controllers” on page 40.

And finally, we showed that the configuration array syntax should have a property
with the key uses if it’s going to refer to a controller method. If you want to name a
Closure route, just pass the Closure in with no key like in Example 3-10.

Example 3-10. Defining Closure routes with a configuration array

Route::get('/members/{id}/edit', [
 'as' => 'members.edit',
 function ($id) {
 //

30 | Chapter 3: Routing and Controllers

 }
]);

We also introduced the route() helper. Just like url(), it’s intended to be used in
views to simplify linking to a named route. If the route has no parameters, you can
simply pass the route name: route(members.index). If it has parameters, pass them
in as an array as the second parameter like we did in example Example 3-9.

Passing route parameters to the route() helper
When your route has parameters (e.g. users/{id}), you need to define those parame‐
ters when you’re using the route() helper to generate a link to the route.

There are a few different ways to pass these parameters. Let’s imagine a route defined
as users/{userId}/comments/{commentId}. If the user ID is 1 and the comment ID
is 2, let’s look at a few options we have available to us.

OPTION 1.

route('users.comments.show', [1, 2])
// http://myapp.com/users/1/comments/2

OPTION 2.

route('users.comments.show', ['userId' => 1, 'commentId' => 2])
// http://myapp.com/users/1/comments/2

OPTION 3.

route('users.comments.show', ['commentId' => 2, 'userId' => 1])
// http://myapp.com/users/1/comments/2

OPTION 4.

route('users.comments.show', ['userId' => 1, 'commentId' => 2, 'opt' => 'a'])
// http://myapp.com/users/1/comments/2?opt=a

As you can see, non-keyed array values are assigned in order; keyed array values are
matched with the route parameters matching their key; and anything left over is
added as a query parameter.

Route Groups
Often a group of routes share a particular characteristic—a certain authentication
requirement, a URI prefix, or maybe a controller namespace.

Route groups allow you to group several routes together in one to reduce duplication
of the route definitions and to increase the clarity of the various segments of the
routes file.

Route Groups | 31

To group two or more routes together, you “surround” the route definitions with a
group; in reality, you’re actually passing a Closure to the group definition, and defin‐
ing the grouped routes within that Closure.

Example 3-11. Defining a route group

Route::group([], function () {
 Route::get('hello', function () {
 return 'Hello';
 });
 Route::get('world', function () {
 return 'World';
 });
});

By default, a route group doesn’t actually do anything. There’s no difference between
the group in Example 3-11 and separating a segment of your routes with code com‐
ments.

The empty array that’s the first parameter, however, allows you to pass a variety of
configuration settings that will apply to the entire route group.

Route group middleware
Probably the most common use for route groups is to apply middleware to a group of
routes. We’ll learn more about middleware in chapter ???, but, among other things,
they’re what Laravel uses for authenticating users and restricting guest users from
using certain parts of a site.

Example 3-12. Restricting a group of routes to logged-in users only

Route::group(['middleware' => 'auth'], function () {
 Route::get('dashboard', function () {
 return view('dashboard');
 });
 Route::get('account', function () {
 return view('account');
 });
});

Route group route prefix
If you have a group of routes that share a segment of their route—for exxample, if
your site’s API is prefixed with api—you can use route groups to simplify this struc‐
ture.

32 | Chapter 3: Routing and Controllers

Example 3-13. Prefixing a route with route groups

Route::group(['prefix' => 'api'], function () {
 Route::get('/', function () {
 //
 });
 Route::get('users', function () {
 //
 });
});

Note that each prefixed group also has a / group that represents the root of the prefix
—in Example 3-13 that’s /api.

Route group sub-domain routing
Sub-domain routing is the same as route prefixing, but it’s scoped by subdomain
instead of route prefix. There are two primary uses for this. First, to present different
sections of the application (or entirely differently applications) to different subdo‐
mains:

Example 3-14. Sub-domain routing

Route::group(['domain' => 'api.myapp.com'], function () {
 Route::get('/', function () {
 //
 });
});

And second, to set part of the subdomain as a parameter—most often used in cases of
multitenancy (think Slack or Harvest, where each company gets their own subdo‐
main like tighten.slack.co).

Example 3-15. Parameterized sub-domain routing

Route::group(['domain' => '{account}.myapp.com'], function () {
 Route::get('/', function ($account) {
 //
 });
 Route::get('users/{id}', function ($account, $id) {
 //
 });
});

Note that any parameters for the group get passed into the grouped routes’ methods
as the first parameter(s).

Route Groups | 33

Route group namespace prefix
When routes are grouped by subdomain or route prefix, it’s likely their controllers
have a similar namespace. In the API example, all of the API routes’ controllers might
be under an API namespace.

Example 3-16. Route group namespace prefixes

// App\Http\Controllers\ControllerA
Route::get('/', 'ControllerA@index');

Route::group(['namespace' => 'API'], function () {
 // App\Http\Controllers\API\ControllerB
 Route::get('/', 'ControllerB@index');
});

Route group name prefix
The prefixes don’t stop there. It’s common that route names will reflect the inheri‐
tance chain of URI elements, so users/comments/5 will be served by a route named
users.comments.show. In this case, it’s common to use a route group around all of
the routes that are beneath the users.comments resource. Using the name prefix on a
route group can make this simpler.

Example 3-17. Route group name prefixes

Route::group(['as' => 'users.', 'prefix' => 'users'], function () {
 Route::group(['as' => 'comments.', 'prefix' => 'comments'], function () {
 // Route name will be users.comments.show
 Route::get('{id}', ['as' => 'show', function () {
 //
 }]);
 });
});

Views
In a few of the route Closures we’ve looked at so far, we’ve seen return

view(account) or something similar. What’s going on here?

If you’re not familiar with the MVC pattern, Views (or Templates) are files that
describe how some particular output should look like. You might have views for
JSON or XML or emails, but the most common views in a web framework output
HTML.

34 | Chapter 3: Routing and Controllers

In Laravel, there are two formats of view you can use out of the box: Blade (see Chap‐
ter 4) or PHP. The difference is in the filename: about.php will be rendered with the
PHP engine, and about.blade.php will be rendered with the Blade engine.

Three ways to view()

There are also three different ways to do view(). For now, just con‐
cern yourself with view(), but if you ever see View::make(), it’s the
same thing, and you could also inject the Illuminate\View\View
Factory if you prefer.

So, once you’ve imported a view, you have the option to simply return it, which will
work fine if the view doesn’t rely on any variables from the controller.

Example 3-18. Simple view() usage

Route::get('/', function () {
 return view('home');
});

This code in Example 3-18 looks for a view in resources/views/home.blade.php or
resources/views/home.php, and loads its contents and parses any inline PHP or
control structures until you have just the view’s output. Once you return it, it’s passed
on to the rest of the application and eventually returned to the user.

But what if you need to pass in variables?

Example 3-19. Passing variables to views

Route::get('tasks', function () {
 return view('tasks.index')
 ->with('tasks', Task::all());
});

This Closure loads the resources/views/tasks/index.blade.php or resources/
views/tasks/index.php view and passes it a single variable named tasks, which
contains the result of the Task::all() method, which is a database query we’ll learn
about in ???.

If you prefer non-fluent routing, you could pass an array of variables as the second
parameter:

Views | 35

Example 3-20. Passing variables to views in an array

Route::get('tasks', function () {
 return view('tasks.index', ['tasks' => Task::all()]);
});

View Composers and sharing variables with every view
Sometimes it can become a hassle to pass the same variables over and over. There
may be a variable that you want accessible to every view in the site, or to a certain
class of views or a certain included sub-view—for example, all views related to tasks,
or the header partial.

It’s possible to share certain variables with every template or just certain templates,
like in the following code:

Example 3-21.

view()->share('variableName', 'variableValue');

To learn more, check out the View composers and service injection section in Chap‐
ter 4.

Controllers
@todo: Add a graphic to explain MVC

I’ve mentioned controllers a few times, but until now most of the examples have
shown route Closures. If you’re not familiar with the MVC pattern, Controllers are
essentially classes that organize the logic of one or more routes together in one place.
Controllers tend to group similar routes together, especially if your application is
structured along a traditionally CRUD-like format; in this case, a controller might
handle all the actions that can be performed on a particular resource.

It may be tempting to cram all of the application’s logic into the controllers, but it’s
better to think of controllers as the traffic cop that routes HTTP requests around
your application. Since there are other ways requests can come into your application
—cron jobs, “Artisan” command line calls, queue jobs, etc.--it’s wise to not rely on
controllers for much behavior. This means a controller’s primary job is to capture the
intent of an HTTP Request and pass it onto the rest of the application.

So, let’s create a controller. There’s an artisan command for that, so from the com‐
mand line run this command:

php artisan make:controller MySampleController

36 | Chapter 3: Routing and Controllers

Artisan and Artisan Generators

Laravel comes bundled with a command-line tool called Artisan.
Artisan can be used to run migrations, create users and other data‐
base records manually, and many other manual, one-time tasks.
Under the make namespace, Artisan provides tools for generating
skeleton files for a variety of system files. That’s what allows us to
run php artisan make:controller.
To learn more about this and other Artisan features, see ???.

This will create a new file named MySampleController.php in app/Http/Control
lers.

Example 3-22. Default generated controller

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;
use App\Http\Controllers\Controller;

class MySampleController extends Controller
{
 // A lot of methods
}

For now, just delete all those methods—we’ll talk about them in a second. Create a
new public method called home() and we’ll just return some text there.

Example 3-23. Simplest controller example

<?php

namespace App\Http\Controllers;

use App\Http\Controllers\Controller;

class MySampleController extends Controller
{
 public function home()
 {
 return 'Hello, World!';
 }
}

Controllers | 37

And, like we learned before, we’ll hook up a route to it:

Example 3-24. Route for the simplest controller

// app/Http/routes.php
<?php

Route::get('/', 'MySampleController@home');

That’s it. Visit the / route and you’ll see the words “Hello, World!”.

Controller Namespacing
In Example 3-24 we referenced a controller with the fully-qualified classname of App
\Http\Controllers\MySampleController, but we only used the class name. This
isn’t because we can simply reference controllers by their class name. Rather, we can
ignore App\Http\Controllers\ when we reference controllers.

This means that if you have a controller with the fully-qualified class name of App
\Http\Controllers\API\ExercisesController, you’d reference it in a route defini‐
tion as API\ExercisesController.

The most common use of a controller method, then, will be something like this:

Example 3-25. Common controller method example

 // TasksController.php
 ...
 public function index()
 {
 return view('tasks.index')
 ->with('tasks', Task::all());
 }

This controller method loads the resources/views/tasks/index.blade.php or
resources/views/tasks/index.php view and passes it a single variable named
tasks, which contains the result of the Task::all() Eloquent method.

Getting user input
The second most common action to perform in a controller method, however, is to
take input from the user and act on it. That introduces a few new concepts, so let’s
take a look at a bit of sample code and walk through the new pieces.

First, let’s bind it quickly; see Example 3-26.

38 | Chapter 3: Routing and Controllers

Example 3-26. Binding basic form actions

// app/Http/routes.php
Route::get('tasks/create', 'TasksController@create');
Route::post('tasks', 'TasksController@store');

Notice that we’re binding the get route of resources/create (which shows the form)
and the post route of resources/ (which is where we post when we’re creating a new
resource). We can assume the create method in our controller just shows a form, so
let’s look at the store method in Example 3-27.

Example 3-27. Common form input controller method

 // TasksController.php
 ...
 public function store()
 {
 $task = new Task;
 $task->title = Input::get('title');
 $task->description = Input::get('description');
 $task->save();

 return redirect('tasks');
 }

We’re seeing Eloquent models and the redirect() functionality, and we’ll talk about
them more later, but you can see what we did here: Create a new Task, pull data out
of the user input and set it on the task, save it, and then redirect back to the all tasks
page.

There are two main ways to get user input from a POST: the Input Façade, which we
used above, and the Request object, which we’ll talk about next.

As you can see, we can get the value of any user-provided information, whether from
a query parameter or a POST value, using Input::get(fieldName). So our user filled
out two fields on the “add task” page: “Input” and “Description.” We get both using
the Input Façade, save it to the database, and then return.

Injected Dependencies into Controllers
Laravel’s Façades present a simple interface to the most useful classes in Laravel’s
codebase. You can get information about the current request and user input, the ses‐
sion, caches, and much more.

But if you prefer to inject your dependencies, or if you want to use a service that
doesn’t have a Façade, you’ll need to find some way to get your dependencies in.

Controllers | 39

This is our first exposure to Laravel’s Service Container, so if you want to know more
about how this is actually functioning, check out chapter ??? to learn more. But for
now, you can think about it as a little bit of Laravel Magic.

All controller methods (including the constructors) are resolved out of Laravel’s Con‐
tainer, which means anything you typehint that the Container knows how to resolve
will be automatically injected.

As a nice example, what if you’d prefer having an instance of the Request object
instead of using the Façade? Just typehint Illuminate\Http\Request in your method
parameters like in Example 3-28.

Example 3-28. Controller method injection via typehinting

 // TasksController.php
 ...
 public function store(\Illuminate\Http\Request $request)
 {
 $task = new Task;
 $task->title = $request->input('title');
 $task->description = $request->input('description');
 $task->save();

 return redirect('tasks');
 }

So, you’ve defined a parameter that must be passed into this method. And since you
typehinted it, and since Laravel knows how to resolve that class name, you’re going to
have the $request object ready for you to use in your method with no work on your
part. No explicit binding, no anything else—it’s just there.

Resource controllers
Sometimes naming the methods in your controllers can be the hardest part of writing
a controller. Thankfully, Laravel has some conventions for all of the routes of a tradi‐
tional REST/CRUD controller (called a “Resource controller” in laravel); additionally,
it comes with a generator out of the box and a convenience route definition that
allows you to bind an entire resource controller at once.

To see the methods that Laravel expects for a resource controller, let’s generate a new
controller from the command line:

php artisan make:controller MySampleResourceController

Now open app/Http/Controllers/MySampleResourceController.php. You’ll see it
comes pre-filled with quite a few methods. Let’s walk over what each represents. We’ll
use a Task as an example.

40 | Chapter 3: Routing and Controllers

The methods of Laravel’s resource controllers
For each, you can see the HTTP Verb, the URL, the controller method name, and the
“name”:

Verb URL Controller method Name Description

GET /tasks index tasks.index Show all tasks

GET /tasks/create create tasks.create Show the create task form

POST /tasks store tasks.store Accept form submission from the create task form

GET /tasks/{photo} show tasks.show Show one task

GET /tasks/{photo}/edit edit tasks.edit Edit one task

PUT/PATCH /tasks/{photo} update tasks.update Accept form submission from the edit task form

DELETE /tasks/{photo} destroy tasks.destroy Delete one task

Binding a resource controller
So, we’ve seen both that these are the conventional route names to use in Laravel, and
also that it’s easy to generate a resource controller with all the route names. Thank‐
fully, you don’t have to bind all those routes every time if you don’t want. Instead,
there’s a trick for that—take a look at Example 3-29.

Example 3-29. Resource controller binding

// app/Http/routes.php
Route::resource('tasks', 'TasksController');

Not only will this automatically bind all of the resource routes for you, but it’ll also
create a pre-defined set of route names for all of your auto-bound routes. That
means, for example, the index method on the tasks resource controller will get
named tasks.index.

As you can probably guess, these are both useful as convenience tools for binding an
entire resource at once, but also just as guidelines for how to go about naming your
own methods.

Controllers | 41

Artisan route:list

If you ever find yourself in a situation wondering what routes your
current application has available, there’s a tool for that: From the
command line, run php artisan route:list and you’ll get a list‐
ing of all of the available routes.

Figure 3-1. php artisan route:list example

Route model binding
One of the most common actions, particularly in a REST-style URL structure (e.g. /
conference/{conference_id}) is that the first line of any controller method tries to
find the resource with the given idea, like in Example 3-30.

Example 3-30. Getting a resource for each route

Route::get('conferences/{id}', function ($id) {
 $conference = Conference::findOrFail($id);
});

This is such a common behavior that Laravel has introduced a feature to simplify it
called “Route Model Binding.” This allows you to define that a particular parameter
name (e.g. {conference}) will indicate to the route resolver that it should look up an
Eloquent record with that ID and then pass it in as the parameter instead of the ID.

There are two kinds of route model binding: implicit and custom (or explicit).

Implicit route model binding
The simplest way to use route model binding is to name your route parameter some‐
thing unique to that model (e.g. name it $conference instead of $id), then typehint
that parameter in the Closure/controller method and use the same variable name
there. It’s easier to show than to describe, so take a look at Example 3-31.

42 | Chapter 3: Routing and Controllers

Example 3-31. Using an explicit Route Model Binding

Route::get('conferences/{conference}', function (Conference $conference) {
 return view('conferences.show')->with('conference', $conference);
});

Because the route parameter ({conference}) is the same as the method parameter
($conference), and the method parameter is type-hinted with a Conference model
(Conference $conference), Laravel sees this as a route model binding. Every time
this rout is visited, the applicaiton will assume that whatever is passed into the URL
in place of {conference} is an ID that should be used to look up a Conference, and
then that resulting model instance will be passed in to your Closure or controller
method.

Customizing the royte key for an Eloquent model

Any time an Eloquent model is looked up via a URL segment (usu‐
ally because of route model binding), the default column Eloquent
will look it up by is its primary key (ID).
To change the column your Eloquent model uses as its URL
lookup, add a method to your model named getRouteKeyName:

 public function getRouteKeyName()
 {
 return 'slug';
 }

Now, a URL like conferences/{conference} will expect to get the slug instead of the
ID, and will perform its lookups accordingly.

Custom route model binding
To manually configure Route Model bindings, go to the boot() method of App\Pro
viders\RouteServiceProvider and add a line like in <<EX61>.

Example 3-32. Adding a Route Model Binding

 public function boot(Router $router)
 {
 parent::boot($router);

 $router->model('event', Conference::class);
 }

You’ve now defined that whenever a route has a parameter in its definition named
{event}, the route resolve will return an instance of the Conference class with the ID
of that URL parameter.

Route model binding | 43

Example 3-33. Using an explicit Route Model Binding

Route::get('events/{event}', function (Conference $event) {
 return view('events.show')->with('event', $event);
});

Form method spoofing & CSRF
Sometimes, you need to pass information along to Laravel’s router manually. CSRF
tokens prove that the requesting form is actually coming from the same application,
and have to be passed manually. And HTML forms only allow for GET or POST, so if
you want any other sort of verb, you’ll need to specify that yourself. Let’s take a look
at these two.

What is CSRF?

CSRF, or Cross-Site Request Forgery, is when one web site pretends
to be another. The goal is for someone to hijack your users’ access
to your web site by submitting forms from their web site toward
your web site, in the user’s browser, while they’re still logged into
your site.
The best way around CSRF is to protect all inbound routes — POST,
DELETE, etc.--with a token, which Laravel does out of the box.

An introduction to HTTP verbs
We’ve talked about the GET and POST HTTP verbs already. If you’re not familiar with
HTTP verbs, the other two most common are PUT and DELETE, but there’s also HEAD,
OPTIONS, PATCH, and two others that are pretty much never used in normal web devel‐
opment, TRACE and CONNECT.

Here’s the quick rundown: GET requests a resource and HEAD asks for a headers-only
version of the GET, POST creates a resource, PUT overwrites a resources and PATCH
modifies a resource, DELETE deletes a resource, and OPTIONS asks the server which
verbs are allowed at this URL.

HTTP verbs in Laravel
So, as we’ve shown already, you can define which verbs a route will match in the route
definition, with the difference between Route::get, Route::post, Route::any, or
Route::match.

But how does one send a request other than GET with a web browser? First, the
method in an HTML form determines its HTTP verb: if your form has a method of

44 | Chapter 3: Routing and Controllers

“get”, it will submit via query parameters and a GET method; if the form has a method
of “post”, it will submit via the post body and a POST method.

JavaScript frameworks make it easy to send other requests like DELETE and PATCH. But
if you find yourself needing to submit forms in Laravel with verbs other than GET or
POST, you’ll need to use “form method spoofing”.

Form method spoofing
To inform Laravel that the form you’re currently submitting should be treated as
something other than POST, add a hidden variable named _method with the value of
either PUT, PATCH, or DELETE, and Laravel will match and route that form submission
as if it were actually a request with that verb.

Example 3-34. Form method spoofing

<form action="/tasks/5" method="POST">
 <input type="hidden" name="_method" value="DELETE">
</form>

The form in Example 3-34, since it’s passing Laravel the method of “DELETE,” will
match routes defined with Route::delete but not those with Route::post.

CSRF protection
If you’ve tried to create and submit a form in a Laravel application already, you’ve
likely run into the dreaded TokenMismatchException. If you run the form in
Example 3-34, you’ll actually run into this exception already.

By default, every route in Laravel except “read-only” routes (those using GET, HEAD, or
OPTIONS) are protected against Cross-Site Request Forgery by requiring a token (in
the form of an input named _token) be passed along with each request. This token is
generated at the start of every session, and every non-read-only route compares the
submitted _token against the session token.

You have two options for getting around this. The first, and preferred method, is to
add the _token input to each of your submissions. In HTML forms, that’s simple;
look at Example 3-35.

Example 3-35. Form method spoofing

<form action="/tasks/5" method="POST">
 <input type="hidden" name="_method" value="DELETE">
 <input type="hidden" name="_token" value="{{ csrf_token() }}">
</form>

Form method spoofing & CSRF | 45

In JavaScript applications, it’s a bit more work, but not much. The most common sol‐
ution, for sites using jQuery, is to store the token in a meta tag on every page like in
Example 3-36.

Example 3-36. Storing the CSRF token in a meta tag

<meta name="csrf-token" content="{{ csrf_token() }}">

Storing the token in a meta tag makes it easy to globally bind that to the correct
HTTP header, which you can do once globally for all jQuery requests, like in
Example 3-37.

Example 3-37. Globally binding a jQuery header for CSRF

$.ajaxSetup({
 headers: {
 'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')
 }
});

Laravel will check the X-CSRF-TOKEN on every request and valid tokens passed there
will mark the CSRF protection as satisfied.

Redirects
There are three common responses that you’ll return from your controller methods
or route Closures: views, redirects, and errors. We’ve already covered views and we’ll
cover errors next, but let’s address redirects.

There are two common ways to generate a redirect; we’ll use the Façades here, but
you may prefer the global helper. Both are create an instance of Illuminate\Http
\RedirectResponse, performing some convenience methods on it, and then return‐
ing it; you could do this manually, but you’ll have to do a little more work yourself.

Example 3-38. Three ways to return a redirect

Route::get('redirect-with-facade', function () {
 return Redirect::to('auth/login');
});

Route::get('redirect-with-helper', function () {
 return redirect()->to('auth/login');
});

Route::get('redirect-with-helper-shortcut', function () {
 return redirect('auth/login');
});

46 | Chapter 3: Routing and Controllers

Note that the redirect() helper exposes the same methods as the Redirect Façade,
but it also has a shortcut; if you pass parameters directly to the helper, instead of
chaining methods after it, it’s a shortcut to the to() Redirect method.

You’ll notice to(), the most commonly used redirect method, has a first parameter
that should be set to the URI that you want to redirect the user to. There are a few
other options available, though.

Redirect to
The method signature for the to() method for redirects looks like this:

function to($to = null, $status = 302, $headers = [], $secure = null)

$to is a valid internal URI; $status is the HTTP status (defaulting to 301 FOUND);
$headers allows you to define which HTTP headers to send along with your redirect;
and $secure allows you to override the default choice of http vs https (which is nor‐
mally set based on your current request URL).

Redirect route
The route() method is the same as the to() method, but rather than point to a par‐
ticular URI, it points to a particular route name.

Example 3-39. Redirect route

Route::get('redirect', function () {
 return Redirect::route('conferences.index');
});

Note that, since some route names require parameters, its parameter order is a little
bit different; it has an optional second parameter for the route parameters:

function route($to = null, $parameters = [], $status = 302, $headers = [])

So, using it might look a little like Example 3-40.

Example 3-40. Redirect route with parameters

Route::get('redirect', function () {
 return Redirect::route('conferences.show', ['conference' => 99]);
});

Redirect back
Because of some of the built-in conveniences of Laravel’s session implementation,
your application will always have a knowledge of what the user’s previously-visited

Redirects | 47

page was. That opens up the opportunity for a Redirect::back() redirect, which
simply redirects the user to whatever page they came from.

Redirect guest and intended
When a user visits a page they’re currently not authenticated for—for example, visit‐
ing a dashboard when their login session has expired—Laravel captures their
intended URI and redirects back to it after a successful authentication. This is per‐
formed using guest() and intended().

Redirect::guest() is a normal Redirect::to() redirect, except it captures the cur‐
rent URL in a query parameter named “url.intended” for use later. You would use this
to redirect a user away from their current URL with the intent for them to return
after authentication.

Redirect::intendend() grabs the url.intended query parameter and redirects to it.
You would use this after successfully authenticating a user, to redirect them back to
their intended URI.

Thankfully, the baked-in Laravel authentication already handles these both for you,
but you can use them manually if you’re doing your own authentication.

Other redirect methods
The redirect service provides other methods that are less commonly used, but still
available:

• home() redirects to a route named home
• refresh() redirects to the same page the user is currently on
• away() allows for redirecting to an external URL without the default URL valida‐

tion
• secure() is like to() with the secure parameter set to true
• action() allows you to like to a controller and method like this: action(MyCon
troller@myMethod)

Redirect with
When you’re redirecting the user to a different page, you often want to pass certain
data along with them. You could manually flash the data to the session, but Laravel
has some convenience methods to help you with that.

Most commonly, you can pass along either an array of keys and values or a single key
and value using with(), like in example Example 3-41.

48 | Chapter 3: Routing and Controllers

Example 3-41. Redirect with data

Route::get('redirect-with-key-value', function () {
 return Redirect::to('dashboard')
 ->with('error', true);
});

Route::get('redirect-with-array', function () {
 return Redirect::to('dashboard')
 ->with(['error' => true, 'message' => 'Whoops!']);
});

You can also redirect with the form input flashed; this is most common in the case of
a validation error, where you want to send the user back to the form they just came
from.

Example 3-42. Redirect with form input

Route::get('form', function () {
 return view('form');
});

Route::post('form', function () {
 return Redirect::to('form')
 ->withInput()
 ->with(['error' => true, 'message' => 'Whoops!']);
});

The easiest way to get the flashed Input that was passed with withInput is the old()
helper, which can be used to get all old input (old()) or just the value for a particular
key (old(username)). You’ll commonly see this in views, which allows this HTML to
be used both on the “create” and the “edit” view for this form:

<input name="username" value="<?=
 old('username', 'Default username instructions here');
?>">

Speaking of validation, there is also a useful helper for passing errors along with a
redirect response. You can pass it any “provider” of errors, which may be an error
string, an array of errors, or, most commonly, the Illuminate Validator, which we’ll
cover in chapter ???.

Example 3-43. Redirect with errors

Route::post('form', function () {
 $validator = Validator::make($request->all), $this->validationRules);

 if ($validator->fails()) {
 return Redirect::to('form')

Redirects | 49

 ->withErrors($validator)
 ->withInput();
 }
});

withErrors() automatically shares an $errors variable with the views of the page it’s
redirecting to, for you to handle however you’d like.

Abort
After returning views and redirects, the most common way to exit a route is to abort.
There’s a globally available abort() method which optionally takes an HTTP status
code, a message, and a headers array as parameters.

Example 3-44. 403 Forbidden Abort

Route::post('something-you-cant-do', function () {
 abort(403, 'You cannot do that!');
});

Custom responses
There are a few other options available for us to return, so let’s go over the most com‐
mon responses after views, redirects, and errors. Just like with redirects, you can
either use the Response Façade or the response() helper to run these methods on.

Response make
If you want to create an HTTP Response manually, just pass your data into the first
parameter of Response::make(): return Response::make(Hello, World!). Once
again, the second parameter is the HTTP status code and the third is your headers.

Response json/jsonp
To create a JSON-encoded HTTP response manually, pass your JSON-able content
(arrays, collections, or whatever else) to the json() method: return

Response::json(User::all());. It’s just like make(), except it json_encodes your
content and sets the appropriate headers.

Response download
To send a downloadable file, pass either a string filename or a SplFileInfo instance
to download(), with an optional second parameter of the filename: return

Response::download(file501751.pdf, myFile.pdf);.

50 | Chapter 3: Routing and Controllers

Testing
In some other communities, the idea of testing controller methods is common, but
within Laravel (and most of the PHP community), it’s most common to rely on appli‐
cation testing to test the functionality of routes.

For example, to test to make sure a POST route works correctly, you can write a test
like Example 3-45.

Example 3-45. Writing a simple POST route test

// AssignmentTest.php
public function test_post_creates_new_assignment()
{
 $this->post('/assignments', [
 'title' => 'My great assignment'
]);

 $this->seeInDatabase('assignments', [
 'title' => 'My great assignment'
]);
}

Did we directly call the controller methods? No. But we ensured that the goal of this
route—to receive a POST and save its important information to the database—was
met.

You can also use similar syntax to visit a route and verify that certain text shows up
on the page, or that clicking certain buttons do certain things.

Example 3-46. Writing a simple GET route test

// AssignmentTest.php
public function test_list_page_shows_all_assignments()
{
 $assignment = Assignment::create([
 'title' => 'My great assignment'
]);

 $this->visit('assignments')
 ->andSee(['My great assignment']);
}

TL;DR
Laravel’s routes are defined in app/Http/routes.php, where you can define the
expected URI, which segments are static and which are parameters, which HTTP

Testing | 51

verbs can access it, and how to resolve it. You can also attach middleware to routes,
group them, and give them names.

What is returned from the route Closure or controller method dictates how Laravel
response to the user. If it’s a string or a view, it’s presented to the user; if it’s other sorts
of data, it’s converted to JSON and presented to the user; and if it’s a redirect, it forces
a redirect.

Laravel provides a series of tools and conveniences to simplify common routing-
related tasks and structures. These include resource controllers, route model binding,
and form method spoofing.

@todo: Need to add Laravel 5.2’s middleware groups to this chapter

52 | Chapter 3: Routing and Controllers

CHAPTER 4

Blade Templating

Compared to most other backend languages, PHP actually functions relatively well as
a templating language. But it has its shortcomings, and it’s also just ugly to be be
using <?php inline all over the place, so you can expect most modern frameworks to
offer a templating language.

Unlike many other Symfony-based frameworks, Laravel doesn’t use Twig by default—
although there’s a Twig Bridge package that makes it easy to use Twig if you like it.

Instead, Laravel provides a custom templating engine called Blade, which is inspired
by .NET’s Razor engine. It’s functionally very similar to Twig, but the syntax is closer
to Razor and the learning curve for PHP developers tends to be lower than for Twig.

Take a look at a common display pattern in PHP, Twig, and Blade in Example 4-1.

Example 4-1. PHP vs. Twig vs. Blade

<?php /* PHP */ ?>
<?php if (empty($users)): ?>
 No users.
<?php else: ?>
 <?php foreach ($users as $user): ?>
 • <?= $user->first_name ?> <?= $user->last_name ?>

 <?php endforeach; ?>
<?php endif; ?>

{# Twig #}
{% for user in users %}
 • {{ user.first_name }} {{ user.last_name }}

{% else %}
 No users.
{% endfor %}

53

https://github.com/rcrowe/TwigBridge

{{-- Blade --}}
@forelse ($users as $user)
 • {{ $user->first_name }} {{ $user->last_name }}

@empty
 No users.
@endforelse

As you can see, Blade’s syntax tends to be somewhere between PHP and Twig—it’s
more powerful, like Twig, and has convenience helpers like forelse, but its syntax is
closer to PHP than Twig.

Additionally, since all Blade syntax is compiled into normal PHP code and then
cached, it’s fast and it allows you to use native PHP in your Blade files if you want.
The common recommendation, however, is to keep any PHP tags out of your Blade
files.

Echoing data
As you can see in the examples above, {{ and }} are used to wrap sections of PHP
that you’d like to echo. {{ $variable }} is similar to <?= $variable ?> in plain
PHP.

It’s different in one way, however: Blade escapes all echoes by default using PHP’s
htmlentities. That means {{ $variable }} is functionally equivalent to <?=
htmlentities($variable) ?>. If you want to echo without the escaping, use {!!
and !!} instead.

{{ and }} when using a frontend templating framework
You might’ve noticed that the echo syntax for Blade ({{/}}) is similar to the echo syn‐
tax for many frontend frameworks. So, how does Blade know when you’re writing
Blade vs. Handlebars?

Any {{ that’s prefaced with an @ will be ignored by Blade. So in Example 4-2, the first
would be parsed by Blade and the other would be echoed out directly.

Example 4-2. Using @{{ to ask Blade to skip

// Parsed as Blade
{{ $bladeVariable }}

// @ removed, and echoed to the view directly
@{{ handlebarsVariable }}

54 | Chapter 4: Blade Templating

Control structures
Most of the control structures in Blade will be very familiar. Many directly echo the
name and structure of the same tag in PHP.

There are a few convenience helpers, but in general, the control structures primarily
just look cleaner than they would in PHP.

Conditionals

@if

Blade’s @if ($condition) compiles to <?php if ($condition): ?>. @else, @elseif,
and @endif also compile to the exact same syntax in PHP. Take a look at Example 4-3
for an example.

Example 4-3. @if, @else, @elseif, and @endif

@if (count($talks) === 1)
 There is one talk at this time period.
@elseif (count($talks) === 0)
 There are no talks at this time period.
@else
 There are {{ count($talks) }} talks at this time period.
@endif

Just like with the native PHP conditionals, you can mix and match these how you
want. They don’t have any special logic; there’s literally a parser looking for something
with the shape of @if ($condition) and replacing it with the appropriate PHP code.

@unless and @endunless

@unless, on the other hand, is a new syntax that doesn’t have a direct cognate in PHP.
It’s the exactly the same as @if, but the inverse. @unless ($condition) is the same as
<?php if (! $condition). See it in use in Example 4-4.

Example 4-4. @unless and @endunless

@unless ($user->hasPaid())
 You can complete your payment by switching to the payment tab.
@endunless

Loops

@for, @foreach, and @while

@for, @foreach, and @while work the same in Blade as they do in PHP.

Control structures | 55

Example 4-5. @for and @endfor

@for ($i = 0; $i < $talk->slotsCount(); $i++)
 The number is {{ $i }}
@endfor

Example 4-6. @foreach and @endforeach

@foreach ($talks as $talk)
 • {{ $talk->title }} ({{ $talk->length }} minutes)
@endforeach

Example 4-7. @while

@while ($item = array_pop($items))
 {{ $item->orSomething() }}

@endwhile

@forelse

We’ve already looked at it in the introduction, but @forelse is a @foreach that also
allows you to program in a fallback if the object you’re iterating over is empty.

Example 4-8. @forelse

@forelse ($talks as $talk)
 • {{ $talk->title }} ({{ $talk->length }} minutes)
@empty
 No talks this day.
@endforelse

Or
If you’re ever unsure whether a variable is set, you’re probably used to checking
isset() on it before echoing it, and echoing something else if it’s not set. Blade has a
convenience helper, or, that does it for you and lets you set a default fallback:
{{ $title or "Default" }} will echo the value of $title if it’s set, or “Default” if
not.

Template inheritance
Just like Twig, Blade provides a structure for inheritance that allows views to extend,
modify, and include other views.

Here’s how inheritance is structured with Blade.

56 | Chapter 4: Blade Templating

Defining sections with @section/@show and @yield
Let’s start with a top-level Blade layout, like in Example 4-9. This is the definition of
the generic page wrapper that we’ll later place page-specific content into.

Example 4-9. Blade layout

<!-- resources/views/layouts/master.blade.php -->
<html>
 <head>
 <title>My Site | @yield('title', 'Home Page')</title>
 </head>
 <body>
 <div class="container">
 @yield('content')
 </div>
 @section('footerScripts')
 <script src="app.js">
 @show
 </body>
</html>

This looks a bit like a normal HTML page, but you can see we’ve yielded in two
places (title and content), and we’ve defined a section in a third (footerScripts).

We have three Blade directives here that each look a little different: yield(content)
alone, yield(title, \'Home Page\) with a defined default, and @section … @show
with actual content in it.

All three function essentially the same. All three are defining that there’s a section with
a given name (which is the first parameter). All three are defining that the section can
be extended later. And all three are telling what to do if the section isn’t extended,
either by providing a string fallback (Home Page), no fallback (which will just not
show anything if it’s not extended), or an entire block fallback (in this case, <script
src="app.js">).

What’s different? Well, clearly, yield(content) has no default content. But addition‐
ally, the default content in yield(title) only will be shown if it’s never extended. If it
is extended, its child sections will not have programmatic access to the default value.
@section … @show, on the otherhand, is both defining a default and doing so in a
way that its default contents will be available to its children, through @parent.

Once you have a parent layout like this, you can extend it like in Example 4-10.

Example 4-10. Extending a Blade Layout

<!-- resources/views/dashboard.blade.php -->
@extends('layouts.master')

Template inheritance | 57

@section('title', 'Dashboard')

@section('content')
 Welcome to your application dashboard!
@endsection

@section('footerScripts')
 @parent

 <script src="dashboard.js">
@endsection

This child view will actually allow us to cover a few new concepts in Blade inheri‐
tance.

@extends
First, with @extends('layouts.master'), we define that this view should not be ren‐
dered on its own, but that it instead extends another view. That means its role is to
define the content of various sections, but not to stand alone. It’s almost more like a
series of buckets of content, rather than an HTML page. It also defines that the view
it’s extending lives at resources/views/layouts/master.blade.php.

@section and @endsection
Second, with @section('title', 'Dashboard'), we provide our content for the first
section, title. Since the content is so short, instead of using @section and @endsec
tion, we’re just using a shortcut. This allows us to pass the content in as the second
parameter of @section and then move on. If it’s a bit disconcerting to see @section
without @endsection, you could just use the normal syntax.

Third, with @section('content') and on, we use the normal syntax to define the
contents of the content section. We’ll just throw a little greeting in for now. Note,
however, that when you’re using @section in a child view, you end it with @endsec
tion (or its alias @stop), instead of @show, which is reserved for defining sections in
parent views.

@parent
Fourth, with @section('footerScripts') and on, we use the normal syntax to
define the contents of the footerScripts section.

But remember, we actually defined that content (or, at least, its “default”) already in
the master layout. So this time, we have two options: we can either overwrite the con‐
tent from the parent view, or we can add to it.

58 | Chapter 4: Blade Templating

You can see that we have the option to include the content from the parent by using
the @parent directive within the section. If we didn’t, the content of this section
would entirely overwrite anything defined in the parent for this section.

@include
So, we have the basics of inheritance established. There are a few more tricks we can
perform.

What if we’re in a view and want to pull in another view? Maybe we have a call-to-
action “Sign up” button that we want to re-use around the site. And maybe we want
to customize its button text every time we use it. Take a look at Example 4-11.

Example 4-11. Including view partials with @include

<!-- resources/views/home.blade.php -->
<div class="content" data-page-name="{{ $pageName }}">
 <p>Here's why you should sign up for our service: It's Great.</p>

 @include('sign-up-button', ['text' => 'See just how great it is'])
</div>

<!-- resources/views/sign-up-button.blade.php -->

 <i class="exclamation-icon"></i> {{ $text }}

@include pulls in the partial and, optionally, passes data into it. Note that, not only
can you explicitly pass data via the second parameter of @include, you can also refer‐
ence any variables that are available to the including view ($pageName, in this exam‐
ple). Once again, you can do whatever you want, but I would recommend you
consider always passing every variable explicitly that you intend to use, just for
clarity.

@each
You can probably imagine some circumstances in which you’d need to loop over an
array or collection and @include a partial for each item. There’s a directive for that.

Let’s say we have a sidebar composed of modules, and we want to incude multiple
modules, each with a different title. Take a look at Example 4-12.

Example 4-12. Using view partials in a loop with @each

<!-- resources/views/sidebar.blade.php -->
<div class="sidebar">
 @each('partials.module', $modules, 'module', 'partials.empty-module')

Template inheritance | 59

</div>

<!-- resources/views/partials/module.blade.php -->
<div class="sidebar-module">
 <h1>{{ $module->title }}</h1>
</div>

<!-- resources/views/partials/module.blade.php -->
<div class="sidebar-module">
 No modules :(
</div>

Take a look at that @each syntax. The first parameter is the name of the view partial.
The second is the array or collection to iterate over. The third is the variable name
that each item will be passed to the view as. And the optional fourth parameter is the
view to show if the array or collection is empty.

View composers and service injection
Like we covered in Chapter 3, we can pass data to our views from the route definition
(see Example 4-13).

Example 4-13. Reminder on how to pass data to views

Route::get('passing-data-to-views', function () {
 return view('dashboard')
 ->with('key', 'value');
});

There are times, however, when you will find yourself passing the same data over and
over to multiple views. Or, you might find yourself using a header partial or some‐
thing else similar that requires some data; will you now have to pass that data in from
every route definition that might ever load that header partial?

Binding data to views using view composers
Thankfully, there’s a simpler way. The solution is called a view composer, and it allows
you to define that any time a particular view loads, it should have certain data passed
to it--without the route definition having to pass that data in explicitly.

Let’s say you have a sidebar on every page which is defined in a partial named parti
als.sidebar and then included on every page. This sidebar shows a list of the last
seven posts that were published on your site. If it’s on every page, every route defini‐
tion would normally have to grab that list and pass it in, like in Example 4-14.

60 | Chapter 4: Blade Templating

Example 4-14. Passing sidebar data in from every route

Route::get('home', function () {
 return view('home')
 ->with('posts', Post::recent());
});

Route::get('about', function () {
 return view('about')
 ->with('posts', Post::recent());
});

That could get annoying quickly. Instead, we’re going to use view composers to
“share” that variable with a prescribed set of views. We can do this a few ways, so let’s
start simple and move up.

Sharing a variable globally
First, the simplest: Just globally “share” a variable like in Example 4-15:

Example 4-15. Sharing a variable globally

view()->share('posts', Post::recent());

You’ll likely place this code in some form of custom ViewComposerServiceProvider
(see ??? to learn more about Service Providers), but for now you could also just put it
in App\Providers\AppServiceProvider in the boot method.

Using view()→share() makes the variable accessible to every view in the entire appli‐
cation, however, so it might be overkill.

Closure-based view composers
The next option is to use a Closure-based view composer to share variables with a
single view like in Example 4-16.

Example 4-16. Creating a Closure-based view composer

view()->composer('partials.sidebar', function ($view) {
 $view->with('posts', Post::recent());
});

As you can see, we’ve defined the name of the view we want it shared with (parti
als.sidebar) in the first parameter and then passed a Closure to the second parame‐
ter; in the Closure, we’ve used $view→with() to share a variable, but now only with a
specific view.

View composers and service injection | 61

View composers for multiple views

Anywhere a view composer is binding to a particular view (like in
Example 4-16 which binds to partials.sidebar), you can also
pass an array of view names instead to bind to multiple views.
Or, you can use an asterisk in the view path: partials.*, or
tasks.*, or just *.

Class-based view composers
Finally, the most flexible but also most complex option is to create a dedicated class
for your view composer.

First, let’s create the view composer class. There’s no formally defined place for view
composers to live, but the docs recommend App\Http\ViewComposers. So let’s create
App\Http\ViewComposers\RecentPostsComposer like in Example 4-17.

Example 4-17. A view composer

<?php namespace App\Http\ViewComposers;

use App\Post;
use Illuminate\Contracts\View\View;

class RecentPostsComposer
{
 private $posts;

 public function __construct(Post $posts)
 {
 $this->posts = $posts;
 }

 public function compose(View $view)
 {
 $view->with('posts', $this->posts->recent());
 }
}

As you can see, we’re injecting the Post model (type-hinted constructor parameters
of view composers will be automatically injected; see ??? for more on the container
and dependency injection). Note that we could skip the private $posts and the con‐
structor injection and just used Post::recent() in the compose method if we wanted.
Then when this composer is called, it runs the compose method, in which we bind the
posts variable to the result of the recent() method.

Just like the other methods of sharing variables, this view composer needs to have a
binding somewhere. Again, you’d likely create a custom ViewComposerServicePro

62 | Chapter 4: Blade Templating

vider, but for now we’ll just put it in the boot method of App\Providers\AppServi
ceProvider.

Example 4-18. Registering a view composer in AppServiceProvider

view()->composer(
 'partials.sidebar',
 'App\Http\ViewComposers\RecentPostsComposer'
);

Note that this binding is the same as a Closure-based view composer, but instead of
passing a Closure, we’re passing the class name of our view composer. Now, every
time Blade renders the partials.sidebar view, it’ll automatically run our provider
and pass the view a posts variable set to the results of the recent() method on our
Post model.

Service injection
There are three primary types of data we’re most likely to inject into a view: collec‐
tions of data to iterate over, single objects that you’re displaying on the page, and
services that generate data or views.

With a service, the pattern will most likely look like Example 4-19, where we inject an
instance of the service into the route definition by type-hinting it in the route defini‐
tion’s method signature, and then pass it into the view.

Example 4-19. Injecting services into a view via the route definition constructor

Route::get('injecting', function (AnalyticsService $analytics) {
 return view('injecting')
 ->with('analytics', $analytics);
});

Just as view composers, Blade’s service injection offers a convenient shortcut to reduc‐
ing duplication in your route definitions. Normally the content of a view using the
navigation service above might look like Example 4-20.

Example 4-20. Using an injected navigation service in a view

<div class="finances-display">
 {{ $analytics->getBalance() }} / {{ $analytics->getBudget() }}
</div>

Blade service injection makes it easy to inject an instance of a class out of the con‐
tainer directly from the view, like in Example 4-21.

View composers and service injection | 63

Example 4-21. Injecting a service directly into a view

@inject('analytics', 'App\Services\Analytics')

<div class="finances-display">
 {{ $analytics->getBalance() }} / {{ $analytics->getBudget() }}
</div>

As you can see, this @inject method has actually made an $analytics variable avail‐
able, which we’re using later in our view.

The first parameter of @inject is the name of the variable you’re injecting, and the
second parameter is the class or interface that you want to inject an instance of. This
is resolved just like when you type-hint a dependency in a constructor elsewhere in
Laravel, and if you’re unfamiliar with how that works, take a look at ??? to learn more.

Just like view composers, Blade service injection makes it easy to make certain data or
functionality available to every instance of a view, without having to inject it via the
route definition every time.

Custom Blade directives
All of the built-in syntax of Blade that we’ve covered so far—@if, @unless, etc.--are
called Blade directives. Each Blade directive is a mapping between a pattern (e.g. @if
($condition)) and a PHP output (e.g. <?php if ($condition): ?>).

Directives aren’t just for the core; you can actually create your own. You might think
directives are good for making little shortcuts to bigger pieces of code—for example,
@button('buttonName'), and having it expand to a larger set of button HTML. This
isn’t a terrible idea, but for simple code expansion like this you might be better off
including a view partial.

I’ve found custom directives the most useful when they simplify some form of
repeated logic. Let’s say we were tired of having to wrap our code with @if
(Auth::guest()) (to check if a user is logged in or not) and we wanted a custom
@ifGuest directive.

As with view composers, it might be worth having a custom Service Provider to regis‐
ter these, but for now let’s just put it in the boot method of App\Providers\AppServi
ceProvider. Take a look at Example 4-22 to see what this binding will look like.

Example 4-22. Binding a custom Blade directive

// AppServiceProvider
public function boot()
{
 Blade::directive('isGuest', function () {

64 | Chapter 4: Blade Templating

 return "<?php if (Auth::guest()): ?>";
 });
}

We’ve now registered a custom directive @isGuest, which will be replaced with the
PHP code <?php if (Auth::guest()): ?>.

This might feel strange. You’re writing a string that will be returned and then executed
as PHP. It takes a minute to get your brain wrapped around it, but once you do you
can see how powerful it can be.

You might be tempted to do some logic to make your custom direc‐
tive faster by performing an operation in the binding and then
embedding the result within the returned string:

Blade::directive('isGuest', function () {
 // Anti-pattern! Do not copy.
 $isGuest = Auth::guest();
 return "<?php if ({$isGuest}): ?>";
});

The problem with this idea is that it assumes this directive will be
re-created on every page load. However, Blade caches aggressively,
so you’re going to find yourself in a bad spot if you try this.

Parameters in custom Blade directives
What if you want to check a condition in your custom logic? Check out
Example 4-24.

Example 4-23. Creating a Blade directive with parameters

// Binding
Blade::directive('newlinesToBr', function ($expression) {
 return "<?php echo nl2br{$expression}; ?>";
});

// In use
<p>@newlinesToBr($message->body)</p>

The $expression parameter received by the Closure represents whatever’s within the
parentheses and the parentheses themselves. So, in Example 4-23, $expression is
actually ($message→body). That’s why there are no parentheses after nl2br in the
binding; they’re already included with $expression.

Custom Blade directives | 65

So, if you find yourself constantly writing the same conditional logic over and over,
consider a Blade directive.

Using custom Blade directives for a multitenant app
Let’s imagine we’re building an application that supports multitenancy, which means
you might be visiting the site from www.myapp.com, client1.myapp.com, cli
ent2.myapp.com, or whatever else.

Let’s imagine we have written a class to encapsulate some of our multietnancy logic
and named it Context. This class will captures information and logic about the con‐
text of the current visit: who’s the authenticated user? Which subdomain are we visit‐
ing? And, important to this example: are we “public” (www.myapp.com) or “client”
(someClientName.myapp.com)?

We’ll probably frequently resolve that Context class in our views and performing con‐
ditionals on it, like Example 4-24. The app(context) is a shortcut to get an instance
of a class from the container, which we’ll learn more about in ???.

Example 4-24. Conditionals on Context without a custom Blade directive

@if (app('context')->isPublic())
 © Copyright MyApp LLC
@else
 © Copyright {{ app('context')->client->name }}
@endif

What if we could simplify the @if (app('context')→isPublic()) to just @ifPub
lic? Let’s do it. Check out Example 4-25.

Example 4-25. Conditionals on Context with a custom Blade directive

// Binding
Blade::directive('ifPublic', function () {
 return "<?php if (app('context')->isPublic()): ?>";
});

// In use
@ifPublic
 © Copyright MyApp LLC
@else
 © Copyright {{ app('context')->client->name }}
@endif

Since this resolves out to a simple if statement, we can still rely on the native @else
and @endif conditionals. But if we wanted, we could also create a custom @elseIf
Client directive, or a separate @ifClient directive, or really whatever else we want.

66 | Chapter 4: Blade Templating

Testing
Testing views is not common, but it’s possible. The most common method of testing
views is through application testing, meaning that you’re actually calling the route
that displays the views, and ensuring the views have certain content. You can also
click buttons or submit forms and ensure that you are redirected to a certain page, or
that you see a certain error. Learn more in ???.

Example 4-26. Testing that a view displays certain content

// EventsTest.php
public function test_list_page_shows_all_events()
{
 $event1 = factory(Event::class)->create();
 $event2 = factory(Event::class)->create();

 $this->visit('events')
 ->andSee($event1->title)
 ->andSee($event2->title);
}

TL;DR
Blade is Laravel’s templating engine. It’s a little bit like Twig and a little bit like straight
PHP. Its “safe echo” brackets are {{ and }}, its unprotected echo brackets are {!!
and !!}, and it has a series of directives that all begin with @ (@if and @unless, for
example).

Define a parent template and leave “holes” in it for content using @yield and @sec
tion/@show. Teach its child views to extend it using @extends('parent.view.name'),
and define their sections using @section/@endsection. Use @parent to reference the
content of the same block in the parent.

View composers make it easy to define that, every time a particular view or subview
loads, it has certain information available to it. And service injection allows the view
itself to dictate what data it needs.

Testing | 67

CHAPTER 5

View Components

Laravel is primarily a PHP framework, but it also has a series of components primar‐
ily focused on generating frontend code. Some of these, like pagination and message
bags, are PHP helpers that target the frontend, but Laravel also provides a Gulp-based
build system called Elixir and some conventions around non-PHP assets.

Since Elixir is at the core of the non-PHP frontend components, let’s start there.

Elixir
Elixir (not to be confused with the functional programming language) is a build tool
that provides a simpler user interface and a series of conventions on top of Gulp.
While it’s far less complex than a framework, it performs the same task of simplifying
and organizing best practices around a tool—in Laravel’s case, the tool is PHP, and in
Elixir’s case, the tool is Gulp.

A quick introduction to Gulp
Gulp is a JavaScript tool designed for running asset compilation and other steps of
your build process.

Gulp is similar to Grunt, Rake, or make—it allows you to define an action or series of
actions to take every time you build your application. This will commonly include
running a CSS preprocessor like Sass or Less, copying files, concatenating and minify‐
ing JavaScript, and much more.

Gulp, and therefore Elixir, are based on the idea of streams. The beginning of most
tasks will load some files into the stream buffer, and then the task will apply transfor‐

69

http://gulpjs.com/
http://gulpjs.com/

mations to the content—preprocess it, minify it, and then maybe save the content to a
new fine.

At its core, Elixir is just a tool in your Gulp toolbox. There isn’t even such a thing as
an Elixir file; you’ll define your Elixir tasks in your gulpfile.js. But it looks a lot
different than vanilla GUlp tasks, and you’ll have to do a lot less work to get it run‐
ning out of the box.

Elixir’s core feature is simplifying the most common Gulp tasks by means of a simpler
API and a series of naming and application structure conventions.

Let’s look at a common example: Running Sass to pre-process your CSS styles. In a
normal Gulp environment, that might look a little bit like Example 5-1.

Example 5-1. Compiling a Sass file in Gulp

var gulp = require('gulp'),
 sass = require('gulp-ruby-sass'),
 autoprefixer = require('gulp-autoprefixer'),
 rename = require('gulp-rename'),
 notify = require('gulp-notify'),
 livereload = require('gulp-livereload'),
 lr = require('tiny-lr'),
 server = lr();

gulp.task('sass', function() {
 return gulp.src('resources/assets/sass/app.scss')
 .pipe(sass({
 style: 'compressed',
 sourcemap: true
 }))
 .pipe(autoprefixer('last 2 version', 'ie 9', 'ios 6'))
 .pipe(gulp.dest('public/css'))
 .pipe(rename({suffix: '.min'}))
 .pipe(livereload(server))
 .pipe(notify({
 title: "Karani",
 message: "Styles task complete."
 }));
});

Now, I’ve seen worse. It reads well and you know what’s going on. But there’s a lot
happening that you’ll just pull into every site you ever make. It can get confusing and
repetitive.

Let’s try that same task in Elixir in Example 5-2.

70 | Chapter 5: View Components

Example 5-2. Compiling a Sass file in Gulp

var elixir = require('laravel-elixir');

elixir(function(mix) {
 mix.sass('app.scss');
});

That’s it. That covers all the basics—preprocessing, notification, folder structure,
auto-prefixing and much more.

Elixir folder structure
Much of Elixir’s simplicity comes from the assumed directory structure. Why make
the decision fresh in every new application about where the source and compiled
assets live? Just stick with Elixir’s convention and you won’t have to think about it
ever again.

Every new Laravel app comes with a resources folder with an assets subfolder,
which is where Elixir will expect your frontend assets to live. Your Sass will live in
resources/assets/sass, or your Less would live in resoures/assets/less, and
your JavaScript would live in resources/assets/js. These would export to
public/css and public/js.

But if you’re interested in changing the structure, you can always change the source
and public paths by changing the appropriate properties (assetsPath and public
Path) on the elixir.config object.

Running Elixir
Since Elixir runs on Gulp, you’ll need to set up a few tools first.

1. First, you’ll need Node.js installed. Visit the Node web site to learn how to get it
running.

2. Next, you’ll need to install Gulp globally on your machine. Just run npm install
--global gulp from the terminal anywhere on your machine.
Once Node and Gulp are installed, you will never have to run those commands
again. Now you’re ready to install this project’s dependencies.

3. Now you can open the project root in your terminal, and run npm install to
install the required packages (Laravel ships with an Elixir-ready package.json
file to direct npm).

You’re now set up! You can run gulp to run Gulp/Elixir once, gulp watch to run it
every time you make any file changes, or gulp scripts or gulp styles to just run
the script or style tasks.

Elixir | 71

http://nodejs.org/

What does Elixir provide?
We’ve already covered that Elixir can preprocess your CSS using Sass or Less. It can
concatenate files, minify them, rename them, and copy them, and it can copy entire
directories or individual files.

Elixir can also process CoffeeScript, ES6 JavaScript, and run Browserify and Autopre‐
fixer on your code. Not only can it, but most of the modern coding standards for
JavaScript and CSS are covered on every script or style, out of the box.

Elixir can also run your tests. There’s a method for PHPUnit and one for PHPSpec;
both listen to changes to your test files and re-run your test suite every time you
make any changes.

The Elixir documentation covers all of these options and more, but we’ll cover a few
specific use cases in the following sections.

The Production Flag
By default, Elixir doesn’t minify all the files it’s generating. But if you want to run the
build scripts in “production” mode, with all minification enabled, add the --
production flag:

$ gulp --production

Passing multiple files
Most of the Elixir methods that normally accept a single file (e.g.
mix.sass('app.scss')) can also take an array of files like in Example 5-3.

Example 5-3. Compiling multiple files with Elixir

var elixir = require('laravel-elixir');

elixir(function(mix) {
 mix.sass([
 'app.scss',
 'public.scss'
]);
});

Source maps

By default, Elixir generates source maps for your files—you’ll see them as a .{file
name}.map file next to each generated file. If you’re not familiar with source maps,
they work with any sort of preprocessor to teach your browser’s web inspector which
files generated the compiled source you’re inspecting.

72 | Chapter 5: View Components

https://laravel.com/docs/elixir

If you don’t want source maps, you can always change the configuration before your
elixir block like in Example 5-4.

Example 5-4. Disabling source maps in Elixir

var elixir = require('laravel-elixir');

elixir.config.sourcemaps = false;

elixir(function(mix) {
 mix.sass('app.scss');
});

Preprocessor-less CSS
If you don’t want to deal with a preprocessor, there’s a command for that—it will grab
all of your CSS files, concatenate them, and output them to the public/css directory,
just as if they had been run through a preprocessor. If you don’t specific an ouput file
name, it’ll end up in all.css. There are a few options, which you can see in
Example 5-5.

Example 5-5. Combining Stylesheets with Elixir

var elixir = require('laravel-elixir');

elixir(function(mix) {
 // Combines all files from resources/assets/css and subfolders
 mix.styles();

 // Combines files from resources/assets/css
 mix.styles([
 'normalize.css',
 'app.css'
]);

 // Combines all styles from other directory
 mix.stylesIn('resources/some/other/css/directory');

 // Combines given styles from resources/assets/css
 // and outputs to a custom directory
 mix.styles([
 'normalize.css',
 'app.css'
], 'public/other/css/output.css');

 // Combines given styles from custom directory
 // and outputs to a custom directory
 mix.styles([
 'normalize.css',
 'app.css'

Elixir | 73

], 'public/other/css/output.css', 'resources/some/other/css/directory');
});

Concatenating JavaScript
The options available for working with normal JavaScript files are very similar to
those available for normal CSS files. Take a look at Example 5-6. Like with styles(),
any commands not provided with an output filename will generate to public/js/
all.js.

Example 5-6. Combining JavaScript files with Elixir

var elixir = require('laravel-elixir');

elixir(function(mix) {
 // Combines files from resources/assets/js
 mix.scripts([
 'jquery.js',
 'app.js'
]);

 // Combines all scripts from other directory
 mix.scriptsIn('resources/some/other/js/directory');

 // Combines given scripts from resources/assets/js
 // and outputs to a custom directory
 mix.scripts([
 'jquery.js',
 'app.js'
], 'public/other/js/output.js');

 // Combines given scripts from custom directory
 // and outputs to a custom directory
 mix.scripts([
 'jquery.js',
 'app.js'
], 'public/other/js/output.js', 'resources/some/other/js/directory');
});

Versioning
Most of the tips from Steve Souder’s Even Faster Web Sites have made their way into
our everyday development practices. We move scripts to the footer, reduce the num‐
ber of HTTP requests, and more, often without even realizing where those ideas ori‐
ginated.

But one of Steve’s tips is still very uncommon, and that is setting a very long cache life
on assets (scripts, styles, and images). This means there will be less requests to your
server to get the latest version of your assets. But it also means that users are

74 | Chapter 5: View Components

http://shop.oreilly.com/product/9780596522315.do

extremely likely to have a cached version of your assets, which will make things get
outdated, and therefore break, quickly.

The solution to this is versioning. Append a unique hash to each asset’s filename
every time you run your build script, and then that unique file will be cached forever,
until the next build.

What’s the problem? Well, first you need to get the unique hash generated and
appended to your filenames. But you also will need to update your views on every
build to reference the new filename.

As you can probably guess, Elixir handles that for you, and it’s incredibly simple.
There are two components: The versioning tool in Elixir, and the elixir() PHP
helper. First, you can version your assets by running mix.version() like in
Example 5-7.

Example 5-7. Mix.version

var elixir = require('laravel-elixir');

elixir(function(mix) {
 mix.version('public/css/all.css');
});

This will now generate a version of that file with a unique hash appended to it—
something like all-84fa1258.css.

Next, use the PHP elixir() helper in your views to refer to that file like in
Example 5-8.

Example 5-8. Using the elixir() helper in views

<link rel="stylesheet" href="{{ elixir("css/all.css") }}">

How does Elixir versioning work behind-the-scenes?
Elixir uses gulp-rev, which takes care of both appending the hash to the filenames,
and also generates a file named public/build/rev-manifest.json. This stores the
information the elixir() helper needs to find the generated file. Take a look at what
a sample rev-manifest.json looks like:

{
 "css/all.css": "css/all-7f592e49.css"
}

Elixir | 75

Tests
With Elixir it’s easy to run your PHPUnit or PHPSpec tests every time your test files
change.

You have two options, mix.phpUnit() and mix.phpSpec(), and each will run the
frameworks directly from the vendor folder, so you won’t have to do anything to
make them work.

If you add one of these methods to your Gulp file, you’ll find they only run once,
even if you’re using gulp watch. How do you get them to respond to changes in your
tests folder?

There’s a separate Gulp command for that: gulp tdd. This grabs just the test com‐
mands out of your Gulp file, whether phpUnit() or phpSpec(), listens to the appro‐
priate folder, and re-runs the test suite whenever any files change.

Elixir extensions
Elixir doesn’t just provide a simple syntax for its own pre-built tasks, it also makes it
easy to define your own.

Let’s say you want to save text to a log file at certain points. That’s a shell command,
which is echo "message" >> file.log. Normally we’d define this as a Gulp task,
using shell('echo "message" >> file.log'), like in Example 5-9.

Example 5-9. Using a Gulp task in Elixir

// Define the task
gulp.task("log", function () {
 var message = "Something happened";
 gulp.src("").pipe(shell('echo "' + message + '" >> file.log'));
});

elixir(function (mix) {
 // Use the task in Elixir
 mix.task('log');

 // Bind the task to run every time certain files are changed
 mix.task('log', 'resources/somefiles/to/watch/**/*')
});

However, if we want a little more control—for example, if we want to allow you to
actually pass in the message, which is really sort of vital to make this particular task
work—we can create an Elixir extension like in Example 5-10.

76 | Chapter 5: View Components

Example 5-10. Creating an Elixir extension

// Either in gulpfile.js, or in an external file and required in gulpfile.js
var gulp = require("gulp"),
 shell = require("gulp-shell"),
 elixir = require("laravel-elixir");

elixir.extend("log", function (message) {
 new Task('log', function() {
 return gulp.src('').pipe(shell('echo "' + message + '" >> file.log'));
 })
 .watch('./resources/some/files/**/*');
});

Pagination
For something that is so common across web applications, pagination still can be
wildly complicated to implement. Thankfully, Laravel has a built-in concept of pagi‐
nation, and it’s also hooked into Eloquent results and the router by default.

Paginating database results
The most common place you’ll see pagination is when you are displaying the results
of a database query and there are too many results for a single page. Eloquent and the
query builder both read the page query parameter from the current query request
and use it to provide a paginate() method on any result sets; the parameter is how
many results you want per page. Take a look at Example 5-11 to see how this works.

Example 5-11. Paginating a Query builder response

// PostsController
 public function index()
 {
 return view('posts.index', ['posts' => DB::table('posts')->paginate(20)]);
 }

Example 5-11 defines that this route should return 20 posts per page, and will define
which page the current user is on based on their URL’s page query parameter, if it has
one. Eloquent models all have the same paginate() method.

Manually creating paginators
If you’re not working with Eloquent or the Query Builder, or if you’re working with a
complex query (e.g. those using groupBy), you might find yourself needing to create a
paginator manually. Thankfully, you can do that with the Illuminate\Pagination
\Paginator or the Illuminate\Pagination\LengthAwarePaginator classes.

Pagination | 77

The difference between the two classes is that Paginator will only provide previous
and next buttons, but no links to each page; LengthAwarePaginator needs to know
the length of the full result, so that it can generate links for each individual page.

Both require you to manually extract the subset of content that you want to pass to
the view.

Message bags
Another common-but-painful feature in web applications is passing messages
between various components of the app, when the end goal is to share them with the
user. Your controller, for example, might want to send a validation message: “The
email field must be a valid e-mail address.” However, thatparticular message needs to
make it not only to the view layer; it actually needs to survive a redirect and then end
up in the view layer of a different page. How do we structure this messaging logic?

Illuminate\Support\MessageBag is a class tasked with storing, categorizing, and
returning messages that are intended for the end user. It groups all messages by key,
which are likely to be something like errors and messags (@todo is that actually
right?), and provides convenience methods for getting all its stored messages or only
those for a particular key, and for outputting these messages in various formats.

You could always just spin up a new instance of MessageBag manually like in
Example 5-12.

Example 5-12. Manually creating and using MessageBag

$messages = [
 'errors' => [
 'Somethign went wrong with edit 1!'
],
 'messages' => [
 'Edit 2 was successful.'
]
];
$messagebag = new \Illuminate\Support\MessageBag($messages);

// Check for errors; if there are any, decorate and echo
if ($messagebag->has('errors')) {
 echo '<ul id="errors">';
 foreach ($messagebag->get('errors', ':message') as $error) {
 echo $error;
 }
 echo '';
}

78 | Chapter 5: View Components

Message bags are also closely connected to Laravel’s validators: when validators return
errors, they actually return an instance of MessageBag, which you can then pass to
your view or attach to a redirect using redirect(route)→withErrors($messagebag).

Laravel passes an empty instance of MessageBag to every view, assigned to the vari‐
able $errors, and if you’ve flashed a message bag using withErrors() on a redirect,
it’ll get assigned to that $errors variable instead. That means every view can always
assume it has an $errors MessageBag it can check in whatever place it does its vali‐
dation, which leads to Example 5-13 as a common snippet developers place on every
page.

Example 5-13. Error bag snippet

// partials/errors.blade.php
@if ($errors->any())
 <div class="alert alert-danger">

 @foreach ($errors as $error)
 {{ $error }}
 @endforeach

 </div>
@endif

Named error bags
Sometimes you need to differentiate message bags not just by key (“notices” vs
“errors”) but also by component. Maybe you have a login form and a signup form on
the same page; how do you differentiate?

When you send errors along a redirect using withErrors, the second parameter is the
name of the bag: redirect(dashboard")→withErrors($validator, 'login). Then
on the dashboard, you can use $errors→login to call all of the methods we saw
before: any(), count(), and more.

String helpers, pluralization, and localization
As developers, we tend to look at blocks of text as just so much Lorem ipsum, waiting
for the client to put real content into it. Seldom are we involved in any logic inside
these blocks.

But there are a few circumstances where you’ll be grateful for the tools Laravel pro‐
vides for string manipulation.

String helpers, pluralization, and localization | 79

The string helpers and pluralization
Laravel has a series of helpers for manipulating strings. They’re available as methods
on the Str class (e.g. Str::plural(), but most also have a function shortcut (e.g.
str_plural()).

The Laravel documentation covers all of the string helpers in detail (TODO INSERT
LINK https://laravel.com/docs/5.1/helpers), but here are a few of the most-commonly-
used helpers:

• e: a shortcut for html_entities
• starts_with, ends_with, str_contains: check a string (first parametr) to see if it

starts with, ends with, or contains another string (second parameter)
• str_is: checks whether a string (second parameter) matches a particular pattern

(first parameter)—for example, foo* will match foobar and foobaz
• str_slug: converts a string to a URL-type slug with hyphens
• str_plural(word, num), str_singular: pluralizes a word or singularizes it; English-

only

@todo finish this, probably expand the things above

Localization
Localization allows you to define multiple languages and mark any strings as targets
for translation. You can set a fallback language, and even handle pluralization varian‐
ces.

In Laravel, you’ll need to set an App locale at some point during the page load so the
localization helpers know which bucket of translations to pull from. You’ll do this
with App::setLocal($localeName), and you can run it in a service provider or a
route or wherever else.

You can define your fallback locale in config/app.php, where you should find a fall
back_local key.

@todo Sidebar or whatever about the naming scheme

Basic localization

So, how do we call for a translated string? There’s a helper trans($key) that will pull
the string for the current locale for the passed key, and if it doesn’t exist, it’ll grab it
from the default locale. See Example 5-14 to see how a basic translation works.

80 | Chapter 5: View Components

https://laravel.com/docs/5.1/helpers)

Example 5-14. Basic use of trans()

echo trans('messages.welcome');

Let’s assume we are using the en locale right now. Laravel will look for a file in resour
ces/lang/es/messages.php, which it will expect to return an array. It’ll look for a
welcome key on that array, and if it exists, it’ll return its value. Take a look at
Example 5-15 for a sample.

Example 5-15. Using a translation

// resources/lang/en/messages.php
return [
 'welcome' => 'Welcome to our site!'
];

// routes.php
Route::get('/en/welcome', function () {
 App::setLocal('en');
 return view('welcome');
});

// resources/views/welcome.blade.php
{{ trans('messages.welcome') }}

Parameters in localization
The above examples are relatively simple. Let’s dig into some that are more complex.
What if we want to greet the user? Take a look at Example 5-16.

Example 5-16. Parameters in translations

// resources/lang/en/messages.php
return [
 'welcome' => 'Welcome back, :name!'
];

// resources/views/welcome.blade.php
{{ trans('messages.welcome', ['name' => 'Jose']) }}

As you can see, prepending a word with a colon (:name) marks it as a placeholder
that can be replaced. The second, optional, parameter of trans() is an of values to
put into placeholders.

String helpers, pluralization, and localization | 81

Pluralization in localization
We already covered pluralization above, so now just imagine you’re defining your
own pluralization rules. There are two ways to do it, so let’s start with the simplest, in
Example 5-17.

Example 5-17. Defining a simple translation with an option for pluralization

// resources/lang/en/messages.php
return [
 'task-deletion' => 'You have deleted a task|You have succesfully deleted tasks'
];

// resources/views/dashboard.blade.php
@if ($numTasksDeleted > 0)
{{ trans_choice('messages.task-deletion', $numTasksDeleted) }}
@endif

As you can see, we also have a trans_choice() method, which takes the count of
items effected as its second parameter, and from this it will determine which string to
use.

You can also use any translation definitions that are compatile with Symfony’s much
more complex Translation component; see Example 5-18 for an example.

Example 5-18. An example of Symfony’s Translation component

// resources/lang/es/messages.php
return [
 'task-deletion' => "{0} You didn't manage to delete any tasks.|[1,4] You deleted a few tasks.|[5,Inf] You deleted a whole ton of tasks."
];

Testing
Testing with Elixir
You’re not going to be writing any tests around your Elixir tasks. However, Elixir pro‐
vides some functions that will help your testing, so let’s talk about that for a second.

@todo talk abotu phpunit

Testing message and error bags
There are two primary ways of testing messages passed along with message and error
bags.

82 | Chapter 5: View Components

First, you can perform a behavior in your application tests that set a message that will
eventually be displayed somewhere; then redirect to that page and asser that the
appropriate message is showed.

Second, for errors (which is the most common use case), you can assert the session
has errors with $this→assertSessionHasErrors($bindings = [], $format =

null). Take a look at Example 5-19 to see what this might look like.

Example 5-19. Asserting the session has errors

public function test_missing_email_field_errors()
{
 $this->post('person/create', ['name' => 'Japheth']);
 $this->assertSessionHasErrors(['email']);
}

Translation and localization
The simplest way to test localization is with application tests. Set the appropriate con‐
text (whether by URL or session), visit() the page, and assert that you see the
appropriate content.

TL;DR
As a full-stack framework, Laravel provides tools and components for the frontend as
well as the back.

Elixir is a wrapper around common Gulp build steps that makes it easy to use the
most modern build steps simply. Elixir makes it easy to add CSS preprocessors; Java‐
Script transpilation, concatenation, and minification; and much more.

Laravel also others other internal tools that target the frontend, including pagination,
message and error bags, and localization.

TL;DR | 83

CHAPTER 6

Collecting and Handling User Data

Web sites that benefit from a framework like Laravel often don’t just serve static con‐
tent. Many deal with complex and mixed data sources, and one of the most common
(and most complex) is user input and its myriad forms: URL paths, query parameters,
POSTed data, and file uploads.

Laravel provides a collection of tools for gathering, validating, normalizing, and fil‐
tering user-provided data in its many forms.

The Request façade
The most common tool for accessing user data in laravel is the Request Façade. It
gives easy access to all of the ways users can give input to your site: POST, posted
JSON, GET (query parameters), and URL segments.

The Request façade actualy exposes the entire Illuminate HTTP
request object, but for now we’re only going to be looking at its
methods which specifically relate to user data.

Request::all

Just like the name suggests, Request::all() gives you an array containing all of the
input the user has provided, from every source. Let’s say, for some reason, you deci‐
ded to have a form POST to a URL with a query parameter (e.g. sending a POST to
http://myapp.com/post?utm=12345). Take a look at Example 6-1 to see what you’d get
from Request::all(). Note: Request::all() also contains information about any files
that were uploaded, but we’ll cover that later in the chapter.

85

http://myapp.com/post?utm=12345)

Example 6-1. Request::all()

// GET route form view at /get-route
<form method="post" action="/post-route?utm=12345">
 {{ csrf_field() }}
 <input type="text" name="firstName">
 <input type="submit">
</form>

// POST route at /post-route
var_dump(Request::all());

// Outputs:
/**
 * [
 * '_token' => 'CSRF token here',
 * 'firstName' => 'value',
 * 'utm' => 12345
 *]
 */

Request::except and Request::only
Request::except provides the same output as Request::all, but you can choose
one or more fields to exclude—for example, _token. You can pass it either a string or
an array of strings.

Let’s look at the same form as in Example 6-1, but using Request::except, in
Example 6-2.

Example 6-2. Request::except()

// POST route at /post-route
var_dump(Request::except('_token'));

// Outputs:
/**
 * [
 * 'firstName' => 'value',
 * 'utm' => 12345
 *]
 */

Request::only is the inverse of Request::except, as you can see in Example 6-3.

Example 6-3. Request::except()

// POST route at /post-route
var_dump(Request::only(['firstName', 'utm']));

86 | Chapter 6: Collecting and Handling User Data

// Outputs:
/**
 * [
 * 'firstName' => 'value',
 * 'utm' => 12345
 *]
 */

Request::has and Request::exists
With Request::has you can detect whether there’s a particular piece of user input
available to you. Check out Example 6-4 for an analytics example with our utm query
string parameter from the previous examples.

Example 6-4. Request::has()

// POST route at /post-route
if (Request::has('utm')) {
 // Do some analytics work
}

Request::exists is the same as Request::has, exist it will return TRUE if the key
exists but is empty.

Request::input

Where Request::all, Request::except, and Request::only operate on the full
array of input provided by the user, Request::input allows you to get the value of
just a single field. Note that the second parameter is the default value, so if the user
hasn’t passed in a value, you can have a sensible (and non-breaking) fallback.

Example 6-5. Request::input()

// POST route at /post-route
$userName = Request::get('name', '(anonymous)');

Array input
Laravel also provides convenience helpers for accessing data from array input. Just
use the “dot” notation to indicate walking down the inheritance tree.

Example 6-6. Dot notation to access array values in user data

// GET route form view at /get-route
<form method="post" action="/post-route">
 {{ csrf_field() }}
 <input type="text" name="employees[0][firstName]">

The Request façade | 87

 <input type="text" name="employees[0][lastName]">
 <input type="text" name="employees[1][firstName]">
 <input type="text" name="employees[1][lastName]">
 <input type="submit">
</form>

// POST route at /post-route
$employeeZeroFirstName = Request::input('employees.0.firstName');
$allLastNames = Request::input('employees.*.lastName');
$employeeOne = Request::input('employees.1');

// If forms filled out as "Jim" "Smith" "Bob" "Jones":
// $employeeZeroFirstName = 'Jim';
// $allLastNames = ['Smith', 'Jones'];
// $employeeOne = ['firstName' => 'Bob', 'lastName' => 'Jones']

JSON input (and Request::json)
So far we’ve covered input from query strings (GET) and form submissions (POST). But
there’s another form of user input that’s becoming more common with the advent of
JavaScript Single-Page-Apps: The JSON request. It’s essentially just a POST request
with the body set to JSON instead of a traditional form POST.

Let’s take a look at what it might look like to submit some JSON to a Laravel route,
and how to use Request::input to pull out that data.

Example 6-7. Getting data from JSON with Request::input

POST /post-route HTTP/1.1
Content-Type: application/json

{"firstName":"Joe","lastName":"Schmoe","spouse":{"firstName":"Jill","lastName":"Schmoe"}}

// post-route
$firstName = Request::input('firstName');
$spouseFirstname = Request::input('spouse.firstName');

Since Request::input is smart enough to pull user data from GET, POST, or JSON,
why would we even worry about using Response::json to get that data? There are
two possible reasons: First, to be more explicit to other programmers on your project
about where you’re expecting the data to come from. And second, if the POST doesnt

88 | Chapter 6: Collecting and Handling User Data

have the correct application/json headers, Request::input won’t pick it up as
JSON, but Request::json will.

Façade namespaces, the request() global helper, and injecting
$request

Any time you’re using Façades inside of namespaced classes (e.g. controllers), you’ll
have to add the full Façade path to the import block at the top of your file (e.g. use
Illuminate\Support\Facades\Request).

Because of this, several of the Façades also have a companion that’s a global helper
function. Almost all provide two functions: First, if they’re run with no parameter,
they expose the same syntax as the façade (e.g. request()→has() is the same as
Request::has()), and second, they have a default behavior for when you pass them a
parameter (e.g. request('firstName') is a shortcut to request()→input('first
Name')).

Finally, with Request, you can also inject an instance of the Request object (learn
more in ???) into any controller method or Route Closure. Just typehint Illuminate
\Http\Request and you can then use all these same methods on that object instead—
e.g. $request→all() instead of Request::all(). Here’s what that typehint might look
like:

Route::post('form', function (Illuminate\Http\Request $request) {
 var_dump($request->all());
});

Route data
It might not be the first thing you’d think when you imagine “user data”, but the URL
is just as much user data as anything else in this chapter.

There are three primary ways you’ll get data from the URL: the Request façade, route
parameters, and request objects. We’ll cover request objects in ???.

From the façade
The Request façade (and the request() helper) has several methods available to rep‐
resent the state of the current page’s URL, but right now let’s look primarily at getting
information about the URL segments.

If you’re not familiar with the idea of URL segments, each group of characters
between / in a URL is called a segment. So, http://www.myapp.com/users/15/ has
two segments: users and 15.

Route data | 89

http://www.myapp.com/users/15/

As you can probably guess, we have two methods available to us: Request::seg
ments() returns an array of all segments, and Request::segment($segmentId)
allows you to get the value of a single segment. Note that segments are returned on a
1-based index, so in the example above, Request::segment(1) would return users.

The Request façade and helper—and request objects, which we haven’t even touched
yet—provide quite a few more methods to help you get data out of the URL. To learn
more, check out ???.

From route parameters
The other primary way we get data about the URL is from route parameters, which
are injected into the controller method or Closure that is serving a current route like
in Example 6-8.

Example 6-8. Getting URL details from route parameters

// routes.php
Route::get('users/{id}', function ($id) {
 // If the user visits myapp.com/users/15/, $id will equal 15
});

To learn more about routes and route binding, check out Chapter 3.

Uploaded files
We’ve talked about different ways users can input text data, but there’s also the matter
of file uploads to consider. The Request façade provides access to any uploaded files
using the Request::file method, which takes the file’s input name as a parameter
and returns an instance of Symfony\Component\HttpFoundation\File\Uploaded
File.

Let’s walk through an example. First, our form, in Example 6-9.

Example 6-9. A form to upload files

<form method="post" enctype="multipart/form-data">
 {{ csrf_field() }}
 <input type="text" name="name">
 <input type="file" name="profile_picture">
 <input type="submit">
</form>

Now, let’s take a look at what we get from running Request::all(), in Example 6-10.
Note that Request::input('profile_picture') will return null; we need to use
Request::file('profile_picture') instead.

90 | Chapter 6: Collecting and Handling User Data

Example 6-10. The output from submitting Example 6-9

// In controller/route Closure
var_dump(Request::all());

// Output:
// [
// "_token" => "token here"
// "name" => "asdf"
// "profile_picture" => UploadedFile {}
//]

if (Request::hasFile('profile_picture')) {
 var_dump(Request::file('profile_picture'));
}

// Output:
// UploadedFile (details)

Validating a file upload
As you can see in Example 6-10, we have access to Request::hasFile to see whether
the user uploaded a file. We can also check whether the file upload was successful
using isValid on the file itself:

if (Request::file('profile_picture')->isValid()) {
 //
}

Because isValid is called on the file itself, it will error if the user didn’t upload a file.
So, to check for both, you’d need to check for the file’s existence first:

if (
 Request::hasFile('profile_picture') &&
 Request::file('profile_picture')->isValid()
) {
 //
}

The UploadedFile class extends PHP’s native SplFileInfo with methods allowing
you to easily inspect and manipulate the file. This list isn’t exhaustive, but can give
you a taste of what you can do:

• guessExtension()

• getMimeType()

• move($directory, $newName = null)

• getClientOriginalName()

Uploaded files | 91

• getClientOriginalExtension()

• getClientMimeType()

• guessClientExtension()

• getClientSize()

• getError()

• isValid()

As you can see, most of the methods have to do with getting information about the
uploaded file, but there’s one that you’ll likely use more than all the others: move().
You can see a common workflow in Example 6-11.

Example 6-11. Common file upload workflow

if (Request::hasFile('profile_picture')) {
 $file = Request::file('profile_picture');
 if (! $file->isValid()) {
 // handle invalid state; likely redirect with an error message
 }

 $newFileName = Str::random(32) . '.' . $file->guessExtension();
 $file->move('profile_picture_path_here', $newFileName);
 Auth::user()->profile_picture = $newFileName;
 Auth::user()->save();
}

If you get null when you run Request::file, you might’ve forgot‐
ten to set the encoding type on your form. Make sure to add the
property enctype="multipart/form-data" on your form.

<form method="post" enctype="multipart/form-data">

Validation
Laravel has quite a few ways you can validate incoming data. We’ll cover Form
Requests in the next section, so that leaves us with two primary options: Manual and
using validate() in the controller. Let’s start with the simpler, and more common,
validate().

validate() in the controller using ValidatesRequests
Out of the box, all Laravel controllers use the ValidatesRequests trait, which pro‐
vides a convenient validate() method. Let’s take a look at what it looks like in
Example 6-12.

92 | Chapter 6: Collecting and Handling User Data

Example 6-12. Basic usage of controller validation

// app/Http/routes.php
<?php
Route::get('recipes/create', 'RecipesController@create');
Route::post('recipes', 'RecipesController@store');

// app/Http/Controllers/RecipesController.php
<?php

namespace App\Http\Controllers;

use App\Http\Controllers\Controller;
use Illuminate\Http\Request;

class RecipesController extends Controller
{
 public function create()
 {
 return view ('recipes.create');
 }

 public function store(Request $request)
 {
 $this->validate($request, [
 'title' => 'required|unique:recipes|max:125',
 'body' => 'required'
]);

 // Recipe is valid; proceed to save it
 }
}

We only have four lines of code running our validation here, but they’re doing a lot.

First, we’re explicitly defining the fields we expect and applying rules (here separated
by | pipes) to each individually.

Next, the validate method checks the incoming data from the $request (which
means it can use $request→all() or $request→get() just like we learned about ear‐
lier in the chapter) and determines whether or not it is valid.

If the data is valid, the validate method ends and you can move on with your con‐
troller method, saving the data or whatever else.

But if the data isn’t valid, it throws a ValidationException. This contains instruc‐
tions to the router about how to handle this exception. If the request is AJAX (or if it’s
requesting JSON as a response), the exception will create a JSON response containing
the validation errors. If not, the exception will return a redirect to the previous page,
together with all of the user input and the validation errors—perfect for repopulating
a failed form and showing some errors.

Validation | 93

More on Laravel’s validation rules

In our examples here (and in the docs) we’re using the “pipe” syn‐
tax: 'fieldname': 'rule|otherRule|anotherRule'. But you can
also use the array syntax to do the same thing: 'fieldname':
['rule', 'otherRule', 'anotherRule'].
There’s also the option for validating nested properties. These mat‐
ter if you use HTML’s array syntax, which allows you to, for exam‐
ple, have multiple “users” on an HTML form, each of which have a
name and email address. Here’s how you validate that:

$this->validate($request, [
 'user.name' => 'required',
 'user.email' => 'required|email',
]);

Finally, we don’t have enough space to cover every possible valida‐
tion rule here, but here are a few of the most common rules:

• required
• email
• alpha
• alpha dash
• alpha numeric
• between (date)
• exists (database)
• integer
• min
• max
• required if
• required unless
• same
• size
• unique (database)

Manual validation
If you are not working in a controller, or if you have some other reason that the above
flow is not a good fit, you can manually create a Validator instance and check for suc‐
cess or failure like in Example 6-13.

94 | Chapter 6: Collecting and Handling User Data

Example 6-13. Manual validation

Route::get('recipes/create', function () {
 return view ('recipes.create');
});

Route::post('recipes', function (Illuminate\Http\Request $request) {
 $validator = Validator::make($request->all(), [
 'title' => 'required|unique:recipes|max:125',
 'body' => 'required'
]);

 if ($validator->fails()) {
 return redirect('recipes/create')
 ->withErrors($validator)
 ->withInput();
 }

 // Recipe is valid; proceed to save it
});

As you can see, we create an instance of a validator by passing it our input as the first
parameter and the validation rules as the second parameter. The validator exposes a
fails() method that we can check against, and also can be passed into the withEr
rors() method of the redirect.

Displaying validation error messages
We’ve already covered much of this in Chapter 5, but here’s a quick refresher on how
to display errors from validation.

The validate() method in controllers (and the withErrors() method on redirects
that it relies on) flash any errors to the session. These errors are made available to the
view you’re being redirected to as the $errors variable. And remember, as a part of
Laravel’s magic, that $errors variable will be available every time you load the view,
even if it’s just empty, so you don’t have to check if it isset.

That means you can do something like Example 6-14 on every page.

Example 6-14. Echo validation errors

@if (count($errors) > 0)
 <ul id="errors">
 @foreach ($errors->all() as $error)
 {{ $error }}
 @endforeach

@endif

Validation | 95

Form Requests
If you find yourself wishing you could extract the validation, authentication, and
redirection aspects of your controller code, there’s a structure available for you called
the Form Request. Each Form Request will usually explicitly map to a single HTTP
request—e.g. “Create Comment”.

Creating a Form Request
You can create a new Form Request using Artisan:

php artisan make:request CreateCommentRequest

You now have a Form Request object available at app/Http/Requests/CreateCommen
tRequest.php.

Every Form Request class provides either one or two public methods. The first is
rules(), which needs to return an array of validation rules for this request. And the
second (optional) method is authorize(); if this returns true, the user is authorized
to perform this request, and if false, the user is rejected.

Take a look at Example 6-15 to see a sample form request.

Example 6-15. Sample Form Request

<?php

namespace App\Http\Requests;

use App\Http\Requests\Request;

class CreateCommentRequest extends Request
{
 public function rules()
 {
 return [
 'body' => 'required|max:1000'
];
 }

 public function authorize()
 {
 $blogPostId = $this->route('blogPost');

 return BlogPost::where('id', $blogPostId)
 ->where('user_id', Auth::user()->id)->exists();
 }
}

96 | Chapter 6: Collecting and Handling User Data

The rules() section of Example 6-15 is pretty self-explanatory, but let’s look at
authorize() briefly.

We’re grabbing the segment from the route named blogPost. That’s implying the
route definition for this route probably looks a bit like this: Route::post('blog
Posts/{blogPost}\', function () { // Do stuff }). As you can see, we named
the route parameter blogPost, which makes it accessible in our Request using
$this→route('parameter name').

We then look whether any blog posts exist with that identifier that are owned by the
currently-logged-in user.

Using a Form Request
Now that we’ve create a Form Request object, how do we use it? It’s a little bit of Lara‐
vel magic. Any route (Closure or controller method) that typehints a Form Request as
one of its parameters will benefit from the definitions of that Form Request.

So, let’s try it out, in Example 6-16.

Example 6-16. Using a Form Request

Route::post('comments', function (\App\Http\Requests\CreateCommentRequest $request) {
 // Store comment
});

You might be wondering where we call the Form Request, but Laravel does it for us. It
validates the user input and authorizes their request. If the input is invalid, it’ll act
just like the in-controller validate method works, redirecting them to the previous
page with their input preserved and with the appropriate error messages passed
along. And if the user is not authenticated, Laravel will return a 403 (Forbidden)
error and not execute the route code.

Eloquent model mass assignment
It’s a common pattern to pass the entirety of a form’s input directly to a database
model. In Laravel, that might look like Example 6-17.

Example 6-17. Passing the entirety of a form to an Eloquent model

Route::post('posts', function () {
 $newPost = Post::create(Request::all());
});

We’re assuming here that the end user is kind and not malicious, and has purely kept
only the fields we want them to edit. Maybe the post title or body.

Eloquent model mass assignment | 97

But what if our end user can guess, or discern, that we have a author_id field on that
posts table? What if they used their browser tools to add an author_id field and set
the ID to be someone else’s ID, and then impersonated them by creating fake blog
posts attributed to that other person?

Eloquent has a concept called “mass assignment”, which allows you to either whitelist
fields that are fillable in this way (using the model’s $fillable property) or blacklist
fields that aren’t fillable (using the model’s $guarded property). In our example, we
might want to fill it out like Example 6-18 to keep our app safe.

Example 6-18. Guarding an Eloquent model from mischevious mass assignment

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Post extends Model
{
 protected $guarded = ['author_id'];
}

{{ vs {!!
Any time you display content on a web page that was created by a user, you need to
guard from script injection.

Let’s say you allow your users to write blog posts on your site.

You probably don’t want them to be able to inject malicious JavaScript that’s injected
and run in your unsuspecting visitors’ browsers, right? So you’ll want to escape any
user input that you show on the page to avoid this.

Thankfully, it’s actually already almost covered for you. If you use Laravel’s Blade
templating engine, the default “echo” syntax ({{ $stuffToEcho }}) already runs the
output through htmlentities() (PHP’s best way of making user content safe to
echo) automatically. You actually have to do extra work to get out of it, by using the
{!! $stuffToEcho !!} syntax.

Testing
If you’re interested in testing your interactions with user input, you’re probably most
interested in simulating valid and invalid user input and ensuring that, if the input is
invalid, the user is redirected, and if the input is valid, it ends up in the proper place
(e.g. the database).

98 | Chapter 6: Collecting and Handling User Data

Laravel’s end-to-end application testing makes this simple. Let’s start with an invalid
route that we expect to be rejected, in Example 6-19.

Example 6-19. Testing that invalid input should be rejected

public function test_input_missing_a_title_is_rejected()
{
 $this->post('posts', ['body' => 'This is the body of my post']);
 $this->assertRedirectedTo('posts/create');
 $this->assertSessionHasErrors();
 $this->assertHasOldInput();
}

We’ve asserted that, after invalid input, the user was redirected, with errors, and with
the old input correctly passed back. You can see we’re using a few custom PHPUnit
assertions that Laravel adds here.

So, how do we test our route’s success? Check out Example 6-20.

Example 6-20. Testing that valid input should be processed

public function test_valid_input_should_create_a_post_in_the_database()
{
 $this->post('posts', ['title' => 'Post Title', 'body' => 'This is the body']);
 $this->seeInDatabase(['title' => 'Post Title']);
}

Note that, if you’re testing something using the database, you’ll need to learn more
about Database Migrations and Transactions. More on that in ???.

TL;DR
There are a lot of ways to get the same data: The Request façade, the request() global
helper, and injecting an instance of Illuminate\Http\Request. Each expose the abil‐
ity to get all input, some input, or specific pieces of data, and files and JSON input can
have some special considerations at times.

URI segments are also a possible source for user-inputted data, and they’re also acces‐
sible via the Request tools. Files are as well.

Validation can be performed manually with Validator::make, or automatically using
controllers’ $this→validate() or by using Form Requests. Each automatic tool, upon
invalidation, redirects the user to the previous page with all old input stored and
errors passed along.

Views and Eloquent models also need to be protected from nefarious user input.

TL;DR | 99

	Cover
	Copyright
	Table of Contents
	Chapter 1. Why Laravel?
	Why use a framework?
	“I’ll just build it myself”
	Consistency + Flexibility

	A short history of web and PHP frameworks
	Ruby on Rails
	The influx of PHP frameworks
	The good and the bad of CodeIgniter
	Laravel 1, 2, and 3
	Laravel 4
	Laravel 5

	The philosophy of Laravel
	Developer happiness
	The Laravel Community

	What makes Laravel unique?
	See how it works
	Why Laravel?

	Chapter 2. Setting Up a Laravel Development Environment
	System Requirements
	Tools
	Composer
	Vagrant, VMWare, and VirtualBox
	Laravel Homestead

	Setting up Homestead
	Installing Homestead’s dependencies
	Installing Homestead
	Configuring Homestead
	Creating databases in Homestead
	Provisioning Homestead
	Using Homestead day-to-day

	Creating a new Laravel project
	Installing Laravel with the Laravel installer tool
	Installing Laravel with Composer’s create-project feature

	Laravel’s Directory structure
	The loose files
	The folders

	Up and Running
	Testing
	TL;DR

	Chapter 3. Routing and Controllers
	Route Definitions
	Route verbs
	Route Handling
	Route Parameters
	Route Names

	Route Groups
	Route group middleware
	Route group route prefix
	Route group sub-domain routing
	Route group namespace prefix
	Route group name prefix

	Views
	View Composers and sharing variables with every view
	Controllers
	Getting user input
	Injected Dependencies into Controllers
	Resource controllers

	Route model binding
	Implicit route model binding
	Custom route model binding

	Form method spoofing & CSRF
	An introduction to HTTP verbs
	HTTP verbs in Laravel
	Form method spoofing
	CSRF protection

	Redirects
	Redirect to
	Redirect route
	Redirect back
	Redirect guest and intended
	Other redirect methods
	Redirect with

	Abort
	Custom responses
	Response make
	Response json/jsonp
	Response download

	Testing
	TL;DR

	Chapter 4. Blade Templating
	Echoing data
	Control structures
	Conditionals
	Loops
	Or

	Template inheritance
	Defining sections with @section/@show and @yield
	@extends
	@section and @endsection
	@parent
	@include
	@each

	View composers and service injection
	Binding data to views using view composers
	Service injection

	Custom Blade directives
	Testing
	TL;DR

	Chapter 5. View Components
	Elixir
	Elixir folder structure
	Running Elixir
	What does Elixir provide?

	Pagination
	Paginating database results
	Manually creating paginators

	Message bags
	Named error bags

	String helpers, pluralization, and localization
	The string helpers and pluralization
	Localization

	Testing
	Testing with Elixir
	Testing message and error bags
	Translation and localization

	TL;DR

	Chapter 6. Collecting and Handling User Data
	The Request façade
	Request::all
	Request::except and Request::only
	Request::has and Request::exists
	Request::input
	Array input
	JSON input (and Request::json)

	Route data
	From the façade
	From route parameters

	Uploaded files
	Validation
	validate() in the controller using ValidatesRequests
	Manual validation
	Displaying validation error messages

	Form Requests
	Creating a Form Request
	Using a Form Request

	Eloquent model mass assignment
	{{ vs {!!
	Testing
	TL;DR

